Comparative study of sonochemical reactors with different geometry using thermal and chemical probes
Laboratory scale 20 kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H 2O 2 formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H 2O and DPhM are drive...
Gespeichert in:
Veröffentlicht in: | Ultrasonics sonochemistry 2007-03, Vol.14 (3), p.330-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 3 |
container_start_page | 330 |
container_title | Ultrasonics sonochemistry |
container_volume | 14 |
creator | Nikitenko, S.I. Le Naour, C. Moisy, P. |
description | Laboratory scale 20
kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H
2O
2 formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H
2O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as
η
=
VG/
S, where
G is a sonochemical yield of H
2O
2,
V is a volume of sonicated liquid, and
S is a surface of the sonotrode, was proved to increase with the decrease of
S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H
2O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H
2SO
4 sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH
radicals formed during water sonolysis. |
doi_str_mv | 10.1016/j.ultsonch.2006.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00135226v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350417706000897</els_id><sourcerecordid>68365706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-7a78f5fc12fb50e6feb9c4737e73aa01741400b6173542ade1f6f4a1d7b816863</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqXwFypf4IKyjO3ETm5UK6BIK3GBs-U448arJF5sZ6v99zjs0h6RRhofvvc8eq8obilsKFDxab9ZxhT9bIYNAxCbdUC8KK5pI3nJGta8zG9eQ1lRKa-KNzHuAYC3DF4XV1S0rWBtdV30Wz8ddNDJHZHEtPQn4i3Jxt4MODmjRxJQm-RDJI8uDaR31mLAOZEH9BOmcCJLdPMDSQOGKeN67smT9hB8h_Ft8crqMeK7y74pfn398nN7X-5-fPu-vduVpuIslVLLxtbWUGa7GlBY7FpTSS5Rcq2ByopWAJ2gktcV0z1SK2ylaS-7hopG8Jvi49l30KM6BDfpcFJeO3V_t1NuZgeuAHIojIkjzfSHM52P_L1gTGpy0eA46hn9EpVouKglrLbiDJrgYwxon7wpqLUNtVf_2lBrG2qdv8Lbyw9LN2H_LLvEn4H3F0DHHJcNejYuPnNNBZzTNnOfzxzm9I4Og4rG4WywdwFNUr13_7vlDyYrrKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68365706</pqid></control><display><type>article</type><title>Comparative study of sonochemical reactors with different geometry using thermal and chemical probes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nikitenko, S.I. ; Le Naour, C. ; Moisy, P.</creator><creatorcontrib>Nikitenko, S.I. ; Le Naour, C. ; Moisy, P.</creatorcontrib><description>Laboratory scale 20
kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H
2O
2 formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H
2O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as
η
=
VG/
S, where
G is a sonochemical yield of H
2O
2,
V is a volume of sonicated liquid, and
S is a surface of the sonotrode, was proved to increase with the decrease of
S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H
2O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H
2SO
4 sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH
radicals formed during water sonolysis.</description><identifier>ISSN: 1350-4177</identifier><identifier>EISSN: 1873-2828</identifier><identifier>DOI: 10.1016/j.ultsonch.2006.06.006</identifier><identifier>PMID: 16996294</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical Sciences ; Chemistry ; Diphenylmethane ; Dosimetry ; Exact sciences and technology ; General and physical chemistry ; Hydrogen peroxide ; Instrumentation and Detectors ; Other ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Physics ; Sonochemistry ; Sonoreactor ; Sulphuric acid ; Ultrasonic chemistry</subject><ispartof>Ultrasonics sonochemistry, 2007-03, Vol.14 (3), p.330-336</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-7a78f5fc12fb50e6feb9c4737e73aa01741400b6173542ade1f6f4a1d7b816863</citedby><cites>FETCH-LOGICAL-c432t-7a78f5fc12fb50e6feb9c4737e73aa01741400b6173542ade1f6f4a1d7b816863</cites><orcidid>0000-0002-1009-6742 ; 0000-0003-4802-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultsonch.2006.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18403319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16996294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.in2p3.fr/in2p3-00135226$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikitenko, S.I.</creatorcontrib><creatorcontrib>Le Naour, C.</creatorcontrib><creatorcontrib>Moisy, P.</creatorcontrib><title>Comparative study of sonochemical reactors with different geometry using thermal and chemical probes</title><title>Ultrasonics sonochemistry</title><addtitle>Ultrason Sonochem</addtitle><description>Laboratory scale 20
kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H
2O
2 formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H
2O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as
η
=
VG/
S, where
G is a sonochemical yield of H
2O
2,
V is a volume of sonicated liquid, and
S is a surface of the sonotrode, was proved to increase with the decrease of
S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H
2O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H
2SO
4 sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH
radicals formed during water sonolysis.</description><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Diphenylmethane</subject><subject>Dosimetry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen peroxide</subject><subject>Instrumentation and Detectors</subject><subject>Other</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Physics</subject><subject>Sonochemistry</subject><subject>Sonoreactor</subject><subject>Sulphuric acid</subject><subject>Ultrasonic chemistry</subject><issn>1350-4177</issn><issn>1873-2828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEoqXwFypf4IKyjO3ETm5UK6BIK3GBs-U448arJF5sZ6v99zjs0h6RRhofvvc8eq8obilsKFDxab9ZxhT9bIYNAxCbdUC8KK5pI3nJGta8zG9eQ1lRKa-KNzHuAYC3DF4XV1S0rWBtdV30Wz8ddNDJHZHEtPQn4i3Jxt4MODmjRxJQm-RDJI8uDaR31mLAOZEH9BOmcCJLdPMDSQOGKeN67smT9hB8h_Ft8crqMeK7y74pfn398nN7X-5-fPu-vduVpuIslVLLxtbWUGa7GlBY7FpTSS5Rcq2ByopWAJ2gktcV0z1SK2ylaS-7hopG8Jvi49l30KM6BDfpcFJeO3V_t1NuZgeuAHIojIkjzfSHM52P_L1gTGpy0eA46hn9EpVouKglrLbiDJrgYwxon7wpqLUNtVf_2lBrG2qdv8Lbyw9LN2H_LLvEn4H3F0DHHJcNejYuPnNNBZzTNnOfzxzm9I4Og4rG4WywdwFNUr13_7vlDyYrrKY</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Nikitenko, S.I.</creator><creator>Le Naour, C.</creator><creator>Moisy, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1009-6742</orcidid><orcidid>https://orcid.org/0000-0003-4802-6325</orcidid></search><sort><creationdate>20070301</creationdate><title>Comparative study of sonochemical reactors with different geometry using thermal and chemical probes</title><author>Nikitenko, S.I. ; Le Naour, C. ; Moisy, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-7a78f5fc12fb50e6feb9c4737e73aa01741400b6173542ade1f6f4a1d7b816863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Diphenylmethane</topic><topic>Dosimetry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen peroxide</topic><topic>Instrumentation and Detectors</topic><topic>Other</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Physics</topic><topic>Sonochemistry</topic><topic>Sonoreactor</topic><topic>Sulphuric acid</topic><topic>Ultrasonic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikitenko, S.I.</creatorcontrib><creatorcontrib>Le Naour, C.</creatorcontrib><creatorcontrib>Moisy, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ultrasonics sonochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikitenko, S.I.</au><au>Le Naour, C.</au><au>Moisy, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of sonochemical reactors with different geometry using thermal and chemical probes</atitle><jtitle>Ultrasonics sonochemistry</jtitle><addtitle>Ultrason Sonochem</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>14</volume><issue>3</issue><spage>330</spage><epage>336</epage><pages>330-336</pages><issn>1350-4177</issn><eissn>1873-2828</eissn><abstract>Laboratory scale 20
kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H
2O
2 formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H
2O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as
η
=
VG/
S, where
G is a sonochemical yield of H
2O
2,
V is a volume of sonicated liquid, and
S is a surface of the sonotrode, was proved to increase with the decrease of
S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H
2O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H
2SO
4 sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH
radicals formed during water sonolysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16996294</pmid><doi>10.1016/j.ultsonch.2006.06.006</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1009-6742</orcidid><orcidid>https://orcid.org/0000-0003-4802-6325</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4177 |
ispartof | Ultrasonics sonochemistry, 2007-03, Vol.14 (3), p.330-336 |
issn | 1350-4177 1873-2828 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_00135226v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Chemical Sciences Chemistry Diphenylmethane Dosimetry Exact sciences and technology General and physical chemistry Hydrogen peroxide Instrumentation and Detectors Other Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Physics Sonochemistry Sonoreactor Sulphuric acid Ultrasonic chemistry |
title | Comparative study of sonochemical reactors with different geometry using thermal and chemical probes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20sonochemical%20reactors%20with%20different%20geometry%20using%20thermal%20and%20chemical%20probes&rft.jtitle=Ultrasonics%20sonochemistry&rft.au=Nikitenko,%20S.I.&rft.date=2007-03-01&rft.volume=14&rft.issue=3&rft.spage=330&rft.epage=336&rft.pages=330-336&rft.issn=1350-4177&rft.eissn=1873-2828&rft_id=info:doi/10.1016/j.ultsonch.2006.06.006&rft_dat=%3Cproquest_hal_p%3E68365706%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68365706&rft_id=info:pmid/16996294&rft_els_id=S1350417706000897&rfr_iscdi=true |