Application-specific architectures of CMOS monolithic active pixel sensors
Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integratio...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
container_volume | 568 |
creator | Szelezniak, Michal Besson, Auguste Claus, Gilles Colledani, Claude Degerli, Yavuz Deptuch, Grzegorz Deveaux, Michael Dorokhov, Andrei Dulinski, Wojciech Fourches, Nicolas Goffe, Mathieu Grandjean, Damien Guilloux, Fabrice Heini, Sebastien Himmi, Abdelkader Hu, Christine Jaaskelainen, Kimmo Li, Yan Lutz, Pierre Orsini, Fabienne Pellicioli, Michel Shabetai, Alexandre Valin, Isabelle Winter, Marc |
description | Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15
e
−, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented. |
doi_str_mv | 10.1016/j.nima.2006.05.226 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00123605v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900206011041</els_id><sourcerecordid>S0168900206011041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnvsuskabIb8FKKWqXSg3oOaZrQKetmSdaib2-WikfnMjB8_zDzEXJNoaJA5e2-6vDDVAxAViAqxuQJmdCmZqUStTwlkww1pQJg5-QipT3kUnUzIc_zvm_RmgFDV6beWfRoCxPtDgdnh8_oUhF8sXhZvxYfoQstDrsRsAMeXNHjl2uL5LoUYrokZ960yV399il5f7h_WyzL1frxaTFflZZzOZSKCW_NdguKKSW5Y7auG7rJE1kzuZGOgxBGcD6zYjzYGueNV9Q3dMY3YPiU3Bz37kyr-5j_jt86GNTL-Upjx3quASjjEsSBZpodaRtDStH5vwgFPbrTez2606M7DUJndzl0dwy5_McBXdTJouus22LMVvQ24H_xH6Q7d5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</creator><creatorcontrib>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</creatorcontrib><description>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15
e
−, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2006.05.226</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>In-pixel amplifier ; Instrumentation and Detectors ; Particle detector ; Particle tracking ; Physics ; Pixel detector</subject><ispartof>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190</ispartof><rights>2006 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</citedby><cites>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</cites><orcidid>0000-0001-8822-3548 ; 0000-0003-3069-726X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2006.05.226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.in2p3.fr/in2p3-00123605$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szelezniak, Michal</creatorcontrib><creatorcontrib>Besson, Auguste</creatorcontrib><creatorcontrib>Claus, Gilles</creatorcontrib><creatorcontrib>Colledani, Claude</creatorcontrib><creatorcontrib>Degerli, Yavuz</creatorcontrib><creatorcontrib>Deptuch, Grzegorz</creatorcontrib><creatorcontrib>Deveaux, Michael</creatorcontrib><creatorcontrib>Dorokhov, Andrei</creatorcontrib><creatorcontrib>Dulinski, Wojciech</creatorcontrib><creatorcontrib>Fourches, Nicolas</creatorcontrib><creatorcontrib>Goffe, Mathieu</creatorcontrib><creatorcontrib>Grandjean, Damien</creatorcontrib><creatorcontrib>Guilloux, Fabrice</creatorcontrib><creatorcontrib>Heini, Sebastien</creatorcontrib><creatorcontrib>Himmi, Abdelkader</creatorcontrib><creatorcontrib>Hu, Christine</creatorcontrib><creatorcontrib>Jaaskelainen, Kimmo</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Lutz, Pierre</creatorcontrib><creatorcontrib>Orsini, Fabienne</creatorcontrib><creatorcontrib>Pellicioli, Michel</creatorcontrib><creatorcontrib>Shabetai, Alexandre</creatorcontrib><creatorcontrib>Valin, Isabelle</creatorcontrib><creatorcontrib>Winter, Marc</creatorcontrib><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><title>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15
e
−, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</description><subject>In-pixel amplifier</subject><subject>Instrumentation and Detectors</subject><subject>Particle detector</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Pixel detector</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnvsuskabIb8FKKWqXSg3oOaZrQKetmSdaib2-WikfnMjB8_zDzEXJNoaJA5e2-6vDDVAxAViAqxuQJmdCmZqUStTwlkww1pQJg5-QipT3kUnUzIc_zvm_RmgFDV6beWfRoCxPtDgdnh8_oUhF8sXhZvxYfoQstDrsRsAMeXNHjl2uL5LoUYrokZ960yV399il5f7h_WyzL1frxaTFflZZzOZSKCW_NdguKKSW5Y7auG7rJE1kzuZGOgxBGcD6zYjzYGueNV9Q3dMY3YPiU3Bz37kyr-5j_jt86GNTL-Upjx3quASjjEsSBZpodaRtDStH5vwgFPbrTez2606M7DUJndzl0dwy5_McBXdTJouus22LMVvQ24H_xH6Q7d5o</recordid><startdate>20061130</startdate><enddate>20061130</enddate><creator>Szelezniak, Michal</creator><creator>Besson, Auguste</creator><creator>Claus, Gilles</creator><creator>Colledani, Claude</creator><creator>Degerli, Yavuz</creator><creator>Deptuch, Grzegorz</creator><creator>Deveaux, Michael</creator><creator>Dorokhov, Andrei</creator><creator>Dulinski, Wojciech</creator><creator>Fourches, Nicolas</creator><creator>Goffe, Mathieu</creator><creator>Grandjean, Damien</creator><creator>Guilloux, Fabrice</creator><creator>Heini, Sebastien</creator><creator>Himmi, Abdelkader</creator><creator>Hu, Christine</creator><creator>Jaaskelainen, Kimmo</creator><creator>Li, Yan</creator><creator>Lutz, Pierre</creator><creator>Orsini, Fabienne</creator><creator>Pellicioli, Michel</creator><creator>Shabetai, Alexandre</creator><creator>Valin, Isabelle</creator><creator>Winter, Marc</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8822-3548</orcidid><orcidid>https://orcid.org/0000-0003-3069-726X</orcidid></search><sort><creationdate>20061130</creationdate><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><author>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>In-pixel amplifier</topic><topic>Instrumentation and Detectors</topic><topic>Particle detector</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Pixel detector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szelezniak, Michal</creatorcontrib><creatorcontrib>Besson, Auguste</creatorcontrib><creatorcontrib>Claus, Gilles</creatorcontrib><creatorcontrib>Colledani, Claude</creatorcontrib><creatorcontrib>Degerli, Yavuz</creatorcontrib><creatorcontrib>Deptuch, Grzegorz</creatorcontrib><creatorcontrib>Deveaux, Michael</creatorcontrib><creatorcontrib>Dorokhov, Andrei</creatorcontrib><creatorcontrib>Dulinski, Wojciech</creatorcontrib><creatorcontrib>Fourches, Nicolas</creatorcontrib><creatorcontrib>Goffe, Mathieu</creatorcontrib><creatorcontrib>Grandjean, Damien</creatorcontrib><creatorcontrib>Guilloux, Fabrice</creatorcontrib><creatorcontrib>Heini, Sebastien</creatorcontrib><creatorcontrib>Himmi, Abdelkader</creatorcontrib><creatorcontrib>Hu, Christine</creatorcontrib><creatorcontrib>Jaaskelainen, Kimmo</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Lutz, Pierre</creatorcontrib><creatorcontrib>Orsini, Fabienne</creatorcontrib><creatorcontrib>Pellicioli, Michel</creatorcontrib><creatorcontrib>Shabetai, Alexandre</creatorcontrib><creatorcontrib>Valin, Isabelle</creatorcontrib><creatorcontrib>Winter, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szelezniak, Michal</au><au>Besson, Auguste</au><au>Claus, Gilles</au><au>Colledani, Claude</au><au>Degerli, Yavuz</au><au>Deptuch, Grzegorz</au><au>Deveaux, Michael</au><au>Dorokhov, Andrei</au><au>Dulinski, Wojciech</au><au>Fourches, Nicolas</au><au>Goffe, Mathieu</au><au>Grandjean, Damien</au><au>Guilloux, Fabrice</au><au>Heini, Sebastien</au><au>Himmi, Abdelkader</au><au>Hu, Christine</au><au>Jaaskelainen, Kimmo</au><au>Li, Yan</au><au>Lutz, Pierre</au><au>Orsini, Fabienne</au><au>Pellicioli, Michel</au><au>Shabetai, Alexandre</au><au>Valin, Isabelle</au><au>Winter, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application-specific architectures of CMOS monolithic active pixel sensors</atitle><jtitle>Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2006-11-30</date><risdate>2006</risdate><volume>568</volume><issue>1</issue><spage>185</spage><epage>190</epage><pages>185-190</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15
e
−, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2006.05.226</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8822-3548</orcidid><orcidid>https://orcid.org/0000-0003-3069-726X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190 |
issn | 0168-9002 1872-9576 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_in2p3_00123605v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | In-pixel amplifier Instrumentation and Detectors Particle detector Particle tracking Physics Pixel detector |
title | Application-specific architectures of CMOS monolithic active pixel sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application-specific%20architectures%20of%20CMOS%20monolithic%20active%20pixel%20sensors&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Szelezniak,%20Michal&rft.date=2006-11-30&rft.volume=568&rft.issue=1&rft.spage=185&rft.epage=190&rft.pages=185-190&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2006.05.226&rft_dat=%3Celsevier_hal_p%3ES0168900206011041%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900206011041&rfr_iscdi=true |