Application-specific architectures of CMOS monolithic active pixel sensors

Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190
Hauptverfasser: Szelezniak, Michal, Besson, Auguste, Claus, Gilles, Colledani, Claude, Degerli, Yavuz, Deptuch, Grzegorz, Deveaux, Michael, Dorokhov, Andrei, Dulinski, Wojciech, Fourches, Nicolas, Goffe, Mathieu, Grandjean, Damien, Guilloux, Fabrice, Heini, Sebastien, Himmi, Abdelkader, Hu, Christine, Jaaskelainen, Kimmo, Li, Yan, Lutz, Pierre, Orsini, Fabienne, Pellicioli, Michel, Shabetai, Alexandre, Valin, Isabelle, Winter, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1
container_start_page 185
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 568
creator Szelezniak, Michal
Besson, Auguste
Claus, Gilles
Colledani, Claude
Degerli, Yavuz
Deptuch, Grzegorz
Deveaux, Michael
Dorokhov, Andrei
Dulinski, Wojciech
Fourches, Nicolas
Goffe, Mathieu
Grandjean, Damien
Guilloux, Fabrice
Heini, Sebastien
Himmi, Abdelkader
Hu, Christine
Jaaskelainen, Kimmo
Li, Yan
Lutz, Pierre
Orsini, Fabienne
Pellicioli, Michel
Shabetai, Alexandre
Valin, Isabelle
Winter, Marc
description Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e −, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.
doi_str_mv 10.1016/j.nima.2006.05.226
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_in2p3_00123605v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900206011041</els_id><sourcerecordid>S0168900206011041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnvsuskabIb8FKKWqXSg3oOaZrQKetmSdaib2-WikfnMjB8_zDzEXJNoaJA5e2-6vDDVAxAViAqxuQJmdCmZqUStTwlkww1pQJg5-QipT3kUnUzIc_zvm_RmgFDV6beWfRoCxPtDgdnh8_oUhF8sXhZvxYfoQstDrsRsAMeXNHjl2uL5LoUYrokZ960yV399il5f7h_WyzL1frxaTFflZZzOZSKCW_NdguKKSW5Y7auG7rJE1kzuZGOgxBGcD6zYjzYGueNV9Q3dMY3YPiU3Bz37kyr-5j_jt86GNTL-Upjx3quASjjEsSBZpodaRtDStH5vwgFPbrTez2606M7DUJndzl0dwy5_McBXdTJouus22LMVvQ24H_xH6Q7d5o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</creator><creatorcontrib>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</creatorcontrib><description>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e −, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2006.05.226</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>In-pixel amplifier ; Instrumentation and Detectors ; Particle detector ; Particle tracking ; Physics ; Pixel detector</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190</ispartof><rights>2006 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</citedby><cites>FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</cites><orcidid>0000-0001-8822-3548 ; 0000-0003-3069-726X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2006.05.226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.in2p3.fr/in2p3-00123605$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Szelezniak, Michal</creatorcontrib><creatorcontrib>Besson, Auguste</creatorcontrib><creatorcontrib>Claus, Gilles</creatorcontrib><creatorcontrib>Colledani, Claude</creatorcontrib><creatorcontrib>Degerli, Yavuz</creatorcontrib><creatorcontrib>Deptuch, Grzegorz</creatorcontrib><creatorcontrib>Deveaux, Michael</creatorcontrib><creatorcontrib>Dorokhov, Andrei</creatorcontrib><creatorcontrib>Dulinski, Wojciech</creatorcontrib><creatorcontrib>Fourches, Nicolas</creatorcontrib><creatorcontrib>Goffe, Mathieu</creatorcontrib><creatorcontrib>Grandjean, Damien</creatorcontrib><creatorcontrib>Guilloux, Fabrice</creatorcontrib><creatorcontrib>Heini, Sebastien</creatorcontrib><creatorcontrib>Himmi, Abdelkader</creatorcontrib><creatorcontrib>Hu, Christine</creatorcontrib><creatorcontrib>Jaaskelainen, Kimmo</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Lutz, Pierre</creatorcontrib><creatorcontrib>Orsini, Fabienne</creatorcontrib><creatorcontrib>Pellicioli, Michel</creatorcontrib><creatorcontrib>Shabetai, Alexandre</creatorcontrib><creatorcontrib>Valin, Isabelle</creatorcontrib><creatorcontrib>Winter, Marc</creatorcontrib><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e −, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</description><subject>In-pixel amplifier</subject><subject>Instrumentation and Detectors</subject><subject>Particle detector</subject><subject>Particle tracking</subject><subject>Physics</subject><subject>Pixel detector</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnvsuskabIb8FKKWqXSg3oOaZrQKetmSdaib2-WikfnMjB8_zDzEXJNoaJA5e2-6vDDVAxAViAqxuQJmdCmZqUStTwlkww1pQJg5-QipT3kUnUzIc_zvm_RmgFDV6beWfRoCxPtDgdnh8_oUhF8sXhZvxYfoQstDrsRsAMeXNHjl2uL5LoUYrokZ960yV399il5f7h_WyzL1frxaTFflZZzOZSKCW_NdguKKSW5Y7auG7rJE1kzuZGOgxBGcD6zYjzYGueNV9Q3dMY3YPiU3Bz37kyr-5j_jt86GNTL-Upjx3quASjjEsSBZpodaRtDStH5vwgFPbrTez2606M7DUJndzl0dwy5_McBXdTJouus22LMVvQ24H_xH6Q7d5o</recordid><startdate>20061130</startdate><enddate>20061130</enddate><creator>Szelezniak, Michal</creator><creator>Besson, Auguste</creator><creator>Claus, Gilles</creator><creator>Colledani, Claude</creator><creator>Degerli, Yavuz</creator><creator>Deptuch, Grzegorz</creator><creator>Deveaux, Michael</creator><creator>Dorokhov, Andrei</creator><creator>Dulinski, Wojciech</creator><creator>Fourches, Nicolas</creator><creator>Goffe, Mathieu</creator><creator>Grandjean, Damien</creator><creator>Guilloux, Fabrice</creator><creator>Heini, Sebastien</creator><creator>Himmi, Abdelkader</creator><creator>Hu, Christine</creator><creator>Jaaskelainen, Kimmo</creator><creator>Li, Yan</creator><creator>Lutz, Pierre</creator><creator>Orsini, Fabienne</creator><creator>Pellicioli, Michel</creator><creator>Shabetai, Alexandre</creator><creator>Valin, Isabelle</creator><creator>Winter, Marc</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8822-3548</orcidid><orcidid>https://orcid.org/0000-0003-3069-726X</orcidid></search><sort><creationdate>20061130</creationdate><title>Application-specific architectures of CMOS monolithic active pixel sensors</title><author>Szelezniak, Michal ; Besson, Auguste ; Claus, Gilles ; Colledani, Claude ; Degerli, Yavuz ; Deptuch, Grzegorz ; Deveaux, Michael ; Dorokhov, Andrei ; Dulinski, Wojciech ; Fourches, Nicolas ; Goffe, Mathieu ; Grandjean, Damien ; Guilloux, Fabrice ; Heini, Sebastien ; Himmi, Abdelkader ; Hu, Christine ; Jaaskelainen, Kimmo ; Li, Yan ; Lutz, Pierre ; Orsini, Fabienne ; Pellicioli, Michel ; Shabetai, Alexandre ; Valin, Isabelle ; Winter, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-925fcadd0929963e2c7781badd6726b6e3055a5334c59002caefaf91f8143b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>In-pixel amplifier</topic><topic>Instrumentation and Detectors</topic><topic>Particle detector</topic><topic>Particle tracking</topic><topic>Physics</topic><topic>Pixel detector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szelezniak, Michal</creatorcontrib><creatorcontrib>Besson, Auguste</creatorcontrib><creatorcontrib>Claus, Gilles</creatorcontrib><creatorcontrib>Colledani, Claude</creatorcontrib><creatorcontrib>Degerli, Yavuz</creatorcontrib><creatorcontrib>Deptuch, Grzegorz</creatorcontrib><creatorcontrib>Deveaux, Michael</creatorcontrib><creatorcontrib>Dorokhov, Andrei</creatorcontrib><creatorcontrib>Dulinski, Wojciech</creatorcontrib><creatorcontrib>Fourches, Nicolas</creatorcontrib><creatorcontrib>Goffe, Mathieu</creatorcontrib><creatorcontrib>Grandjean, Damien</creatorcontrib><creatorcontrib>Guilloux, Fabrice</creatorcontrib><creatorcontrib>Heini, Sebastien</creatorcontrib><creatorcontrib>Himmi, Abdelkader</creatorcontrib><creatorcontrib>Hu, Christine</creatorcontrib><creatorcontrib>Jaaskelainen, Kimmo</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Lutz, Pierre</creatorcontrib><creatorcontrib>Orsini, Fabienne</creatorcontrib><creatorcontrib>Pellicioli, Michel</creatorcontrib><creatorcontrib>Shabetai, Alexandre</creatorcontrib><creatorcontrib>Valin, Isabelle</creatorcontrib><creatorcontrib>Winter, Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szelezniak, Michal</au><au>Besson, Auguste</au><au>Claus, Gilles</au><au>Colledani, Claude</au><au>Degerli, Yavuz</au><au>Deptuch, Grzegorz</au><au>Deveaux, Michael</au><au>Dorokhov, Andrei</au><au>Dulinski, Wojciech</au><au>Fourches, Nicolas</au><au>Goffe, Mathieu</au><au>Grandjean, Damien</au><au>Guilloux, Fabrice</au><au>Heini, Sebastien</au><au>Himmi, Abdelkader</au><au>Hu, Christine</au><au>Jaaskelainen, Kimmo</au><au>Li, Yan</au><au>Lutz, Pierre</au><au>Orsini, Fabienne</au><au>Pellicioli, Michel</au><au>Shabetai, Alexandre</au><au>Valin, Isabelle</au><au>Winter, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application-specific architectures of CMOS monolithic active pixel sensors</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2006-11-30</date><risdate>2006</risdate><volume>568</volume><issue>1</issue><spage>185</spage><epage>190</epage><pages>185-190</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Several development directions intended to adapt and optimize monolithic active pixel sensors for specific applications are presented in this work. The first example, compatible with the STAR microvertex upgrade, is based on a simple two-transistor pixel circuitry. It is suited for a long integration time, room-temperature operation and minimum power dissipation. In another approach for this application, a specific readout method is proposed, allowing optimization of the integration time independently of the full frame-readout time. The circuit consists of an in-pixel front-end voltage amplifier, with a gain on the order of five, followed by two analog memory cells. The extended version of this scheme, based on the implementation of more memory cells per pixel, is the solution considered for the outer layers of a microvertex detector at the international linear collider. For the two innermost layers, a circuit allowing fast frame scans together with on-line, on-chip data sparsification is proposed. The first results of this prototype demonstrate that the fixed pattern dispersion is reduced below a noise level of 15 e −, allowing the use of a single comparator or a low-resolution ADC per pixel column. A common element for most of the mentioned readout schemes is a low-noise, low power consumption, layout efficient in-pixel amplifier. A review of possible solutions for this element together with some experimental results is presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2006.05.226</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8822-3548</orcidid><orcidid>https://orcid.org/0000-0003-3069-726X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2006-11, Vol.568 (1), p.185-190
issn 0168-9002
1872-9576
language eng
recordid cdi_hal_primary_oai_HAL_in2p3_00123605v1
source ScienceDirect Journals (5 years ago - present)
subjects In-pixel amplifier
Instrumentation and Detectors
Particle detector
Particle tracking
Physics
Pixel detector
title Application-specific architectures of CMOS monolithic active pixel sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application-specific%20architectures%20of%20CMOS%20monolithic%20active%20pixel%20sensors&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Szelezniak,%20Michal&rft.date=2006-11-30&rft.volume=568&rft.issue=1&rft.spage=185&rft.epage=190&rft.pages=185-190&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2006.05.226&rft_dat=%3Celsevier_hal_p%3ES0168900206011041%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900206011041&rfr_iscdi=true