Polarization in networks: Identification–alienation framework

We introduce a model of polarization in networks as a unifying setting for the measurement of polarization that covers a wide range of applications. We consider a substantially general setup for this purpose: node- and edge-weighted, undirected, and connected networks. We generalize the axiomatic ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2022-10, Vol.102 (1), p.102732, Article 102732
Hauptverfasser: Huremović, Kenan, Ozkes, Ali I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 102732
container_title Journal of mathematical economics
container_volume 102
creator Huremović, Kenan
Ozkes, Ali I.
description We introduce a model of polarization in networks as a unifying setting for the measurement of polarization that covers a wide range of applications. We consider a substantially general setup for this purpose: node- and edge-weighted, undirected, and connected networks. We generalize the axiomatic characterization of Esteban and Ray (1994) and show that only a particular instance within this class can be used justifiably to measure polarization in networks.
doi_str_mv 10.1016/j.jmateco.2022.102732
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_03896336v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406822000696</els_id><sourcerecordid>2738230292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-40c95cf107fec20ad2524d315dc23466054ee63961fa96b8440b9dffa40b83cd3</originalsourceid><addsrcrecordid>eNqFkM9KAzEQh4MoWKuPIBS8unWS7GazXkoRtYWCHvQc0vyhWdtNTbYVPfkOvqFPYuoWr54GZr75DfMhdI5hiAGzq3pYr2RrlB8SICT1SEnJAephXtIMF5Qfoh5QyLMcGD9GJzHWAFCWwHto9OiXMrgP2TrfDFwzaEz75sNLvB5MtWlaZ536nX1_fsmlM00H2iBXZsedoiMrl9Gc7WsfPd_dPt1MstnD_fRmPMsULYo2XVZVoSyG0hpFQGpSkFxTXGhFaM4YFLkxjFYMW1mxOc9zmFfaWpkqp0rTPrrschdyKdbBrWR4F146MRnPROrFRRRAecUoZVuc8IsOXwf_ujGxFbXfhCZxIsnhhAKpSKKKjlLBxxiM_UvGIHZqRS32asVOrejUpr1Rt2fSx1tngogqqVFGu2BUK7R3_yT8AJWKhO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738230292</pqid></control><display><type>article</type><title>Polarization in networks: Identification–alienation framework</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huremović, Kenan ; Ozkes, Ali I.</creator><creatorcontrib>Huremović, Kenan ; Ozkes, Ali I.</creatorcontrib><description>We introduce a model of polarization in networks as a unifying setting for the measurement of polarization that covers a wide range of applications. We consider a substantially general setup for this purpose: node- and edge-weighted, undirected, and connected networks. We generalize the axiomatic characterization of Esteban and Ray (1994) and show that only a particular instance within this class can be used justifiably to measure polarization in networks.</description><identifier>ISSN: 0304-4068</identifier><identifier>EISSN: 1873-1538</identifier><identifier>DOI: 10.1016/j.jmateco.2022.102732</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Economics ; Economics and Finance ; Humanities and Social Sciences ; Mathematics ; Measurement ; Networks ; Neural networks ; Polarization</subject><ispartof>Journal of mathematical economics, 2022-10, Vol.102 (1), p.102732, Article 102732</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-40c95cf107fec20ad2524d315dc23466054ee63961fa96b8440b9dffa40b83cd3</cites><orcidid>0000-0002-3754-279X ; 0000-0002-8720-2494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2022.102732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://shs.hal.science/halshs-03896336$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huremović, Kenan</creatorcontrib><creatorcontrib>Ozkes, Ali I.</creatorcontrib><title>Polarization in networks: Identification–alienation framework</title><title>Journal of mathematical economics</title><description>We introduce a model of polarization in networks as a unifying setting for the measurement of polarization that covers a wide range of applications. We consider a substantially general setup for this purpose: node- and edge-weighted, undirected, and connected networks. We generalize the axiomatic characterization of Esteban and Ray (1994) and show that only a particular instance within this class can be used justifiably to measure polarization in networks.</description><subject>Economics</subject><subject>Economics and Finance</subject><subject>Humanities and Social Sciences</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Polarization</subject><issn>0304-4068</issn><issn>1873-1538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQh4MoWKuPIBS8unWS7GazXkoRtYWCHvQc0vyhWdtNTbYVPfkOvqFPYuoWr54GZr75DfMhdI5hiAGzq3pYr2RrlB8SICT1SEnJAephXtIMF5Qfoh5QyLMcGD9GJzHWAFCWwHto9OiXMrgP2TrfDFwzaEz75sNLvB5MtWlaZ536nX1_fsmlM00H2iBXZsedoiMrl9Gc7WsfPd_dPt1MstnD_fRmPMsULYo2XVZVoSyG0hpFQGpSkFxTXGhFaM4YFLkxjFYMW1mxOc9zmFfaWpkqp0rTPrrschdyKdbBrWR4F146MRnPROrFRRRAecUoZVuc8IsOXwf_ujGxFbXfhCZxIsnhhAKpSKKKjlLBxxiM_UvGIHZqRS32asVOrejUpr1Rt2fSx1tngogqqVFGu2BUK7R3_yT8AJWKhO8</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Huremović, Kenan</creator><creator>Ozkes, Ali I.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-3754-279X</orcidid><orcidid>https://orcid.org/0000-0002-8720-2494</orcidid></search><sort><creationdate>202210</creationdate><title>Polarization in networks: Identification–alienation framework</title><author>Huremović, Kenan ; Ozkes, Ali I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-40c95cf107fec20ad2524d315dc23466054ee63961fa96b8440b9dffa40b83cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Economics</topic><topic>Economics and Finance</topic><topic>Humanities and Social Sciences</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huremović, Kenan</creatorcontrib><creatorcontrib>Ozkes, Ali I.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huremović, Kenan</au><au>Ozkes, Ali I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization in networks: Identification–alienation framework</atitle><jtitle>Journal of mathematical economics</jtitle><date>2022-10</date><risdate>2022</risdate><volume>102</volume><issue>1</issue><spage>102732</spage><pages>102732-</pages><artnum>102732</artnum><issn>0304-4068</issn><eissn>1873-1538</eissn><abstract>We introduce a model of polarization in networks as a unifying setting for the measurement of polarization that covers a wide range of applications. We consider a substantially general setup for this purpose: node- and edge-weighted, undirected, and connected networks. We generalize the axiomatic characterization of Esteban and Ray (1994) and show that only a particular instance within this class can be used justifiably to measure polarization in networks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2022.102732</doi><orcidid>https://orcid.org/0000-0002-3754-279X</orcidid><orcidid>https://orcid.org/0000-0002-8720-2494</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2022-10, Vol.102 (1), p.102732, Article 102732
issn 0304-4068
1873-1538
language eng
recordid cdi_hal_primary_oai_HAL_halshs_03896336v1
source Access via ScienceDirect (Elsevier)
subjects Economics
Economics and Finance
Humanities and Social Sciences
Mathematics
Measurement
Networks
Neural networks
Polarization
title Polarization in networks: Identification–alienation framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20in%20networks:%20Identification%E2%80%93alienation%20framework&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Huremovi%C4%87,%20Kenan&rft.date=2022-10&rft.volume=102&rft.issue=1&rft.spage=102732&rft.pages=102732-&rft.artnum=102732&rft.issn=0304-4068&rft.eissn=1873-1538&rft_id=info:doi/10.1016/j.jmateco.2022.102732&rft_dat=%3Cproquest_hal_p%3E2738230292%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738230292&rft_id=info:pmid/&rft_els_id=S0304406822000696&rfr_iscdi=true