Coupling landscape graph modeling and biological data: a review

Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landscape ecology 2020-05, Vol.35 (5), p.1035-1052
Hauptverfasser: Foltête, Jean-Christophe, Savary, Paul, Clauzel, Céline, Bourgeois, Marc, Girardet, Xavier, Sahraoui, Yohan, Vuidel, Gilles, Garnier, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1052
container_issue 5
container_start_page 1035
container_title Landscape ecology
container_volume 35
creator Foltête, Jean-Christophe
Savary, Paul
Clauzel, Céline
Bourgeois, Marc
Girardet, Xavier
Sahraoui, Yohan
Vuidel, Gilles
Garnier, Stéphane
description Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities. Objectives Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis. Methods We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies. Results Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity. Conclusions Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.
doi_str_mv 10.1007/s10980-020-00998-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_02524370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405451822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gisRJ4frbrmAVVFVCkSiwwW07ipKnSONhNEf8elyDYGE5PuvfdDUfIJYUbCiBvAwWVQQoYBUplqTwiEyokpkrO6DGZgEKaopLslJyFsAEAxgAm5H7hhr5tujppTVeGwvQ2qb3p18nWlfb7Ef0kb1zr6qYwbVKanblLTOLtvrEf5-SkMm2wFz93St4eH14Xy3T18vS8mK_SggPsUlphIUBJFEwommPOLSorsjxHA4pRVIwbzMyMMlHNKGBRci5zWQGXJuM5m5LrsXdtWt37Zmv8p3am0cv5SkcvrIMGFMiZhD2N-NWI9969Dzbs9MYNvoucRg6CC5ohRgpHqvAuBG-r32YK-rCrHneNzVGHXbWMITaGQoS72vq_6n9SX0rXd-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451822</pqid></control><display><type>article</type><title>Coupling landscape graph modeling and biological data: a review</title><source>SpringerNature Journals</source><creator>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</creator><creatorcontrib>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</creatorcontrib><description>Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities. Objectives Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis. Methods We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies. Results Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity. Conclusions Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</description><identifier>ISSN: 0921-2973</identifier><identifier>EISSN: 1572-9761</identifier><identifier>DOI: 10.1007/s10980-020-00998-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biodiversity and Ecology ; Biomedical and Life Sciences ; Coupling ; Decisions ; Disease spread ; Ecology ; Empirical analysis ; Environmental Management ; Environmental Sciences ; Geography ; Graphs ; Humanities and Social Sciences ; Land cover ; Landscape ; Landscape Ecology ; Landscape/Regional and Urban Planning ; Life Sciences ; Nature Conservation ; Review Article ; Reviews ; Scientific papers ; Sustainable Development</subject><ispartof>Landscape ecology, 2020-05, Vol.35 (5), p.1035-1052</ispartof><rights>Springer Nature B.V. 2020. corrected publication 2020</rights><rights>Springer Nature B.V. 2020. corrected publication 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</citedby><cites>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</cites><orcidid>0000-0003-4864-5660 ; 0000-0001-6330-6136 ; 0000-0002-3865-6158 ; 0000-0002-7401-2771 ; 0000-0002-2104-9941 ; 0000-0001-6551-8749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10980-020-00998-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10980-020-00998-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://shs.hal.science/halshs-02524370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foltête, Jean-Christophe</creatorcontrib><creatorcontrib>Savary, Paul</creatorcontrib><creatorcontrib>Clauzel, Céline</creatorcontrib><creatorcontrib>Bourgeois, Marc</creatorcontrib><creatorcontrib>Girardet, Xavier</creatorcontrib><creatorcontrib>Sahraoui, Yohan</creatorcontrib><creatorcontrib>Vuidel, Gilles</creatorcontrib><creatorcontrib>Garnier, Stéphane</creatorcontrib><title>Coupling landscape graph modeling and biological data: a review</title><title>Landscape ecology</title><addtitle>Landscape Ecol</addtitle><description>Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities. Objectives Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis. Methods We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies. Results Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity. Conclusions Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</description><subject>Biodiversity and Ecology</subject><subject>Biomedical and Life Sciences</subject><subject>Coupling</subject><subject>Decisions</subject><subject>Disease spread</subject><subject>Ecology</subject><subject>Empirical analysis</subject><subject>Environmental Management</subject><subject>Environmental Sciences</subject><subject>Geography</subject><subject>Graphs</subject><subject>Humanities and Social Sciences</subject><subject>Land cover</subject><subject>Landscape</subject><subject>Landscape Ecology</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Life Sciences</subject><subject>Nature Conservation</subject><subject>Review Article</subject><subject>Reviews</subject><subject>Scientific papers</subject><subject>Sustainable Development</subject><issn>0921-2973</issn><issn>1572-9761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAUhC0EEqXwB5gisRJ4frbrmAVVFVCkSiwwW07ipKnSONhNEf8elyDYGE5PuvfdDUfIJYUbCiBvAwWVQQoYBUplqTwiEyokpkrO6DGZgEKaopLslJyFsAEAxgAm5H7hhr5tujppTVeGwvQ2qb3p18nWlfb7Ef0kb1zr6qYwbVKanblLTOLtvrEf5-SkMm2wFz93St4eH14Xy3T18vS8mK_SggPsUlphIUBJFEwommPOLSorsjxHA4pRVIwbzMyMMlHNKGBRci5zWQGXJuM5m5LrsXdtWt37Zmv8p3am0cv5SkcvrIMGFMiZhD2N-NWI9969Dzbs9MYNvoucRg6CC5ohRgpHqvAuBG-r32YK-rCrHneNzVGHXbWMITaGQoS72vq_6n9SX0rXd-8</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Foltête, Jean-Christophe</creator><creator>Savary, Paul</creator><creator>Clauzel, Céline</creator><creator>Bourgeois, Marc</creator><creator>Girardet, Xavier</creator><creator>Sahraoui, Yohan</creator><creator>Vuidel, Gilles</creator><creator>Garnier, Stéphane</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4864-5660</orcidid><orcidid>https://orcid.org/0000-0001-6330-6136</orcidid><orcidid>https://orcid.org/0000-0002-3865-6158</orcidid><orcidid>https://orcid.org/0000-0002-7401-2771</orcidid><orcidid>https://orcid.org/0000-0002-2104-9941</orcidid><orcidid>https://orcid.org/0000-0001-6551-8749</orcidid></search><sort><creationdate>20200501</creationdate><title>Coupling landscape graph modeling and biological data: a review</title><author>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity and Ecology</topic><topic>Biomedical and Life Sciences</topic><topic>Coupling</topic><topic>Decisions</topic><topic>Disease spread</topic><topic>Ecology</topic><topic>Empirical analysis</topic><topic>Environmental Management</topic><topic>Environmental Sciences</topic><topic>Geography</topic><topic>Graphs</topic><topic>Humanities and Social Sciences</topic><topic>Land cover</topic><topic>Landscape</topic><topic>Landscape Ecology</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Life Sciences</topic><topic>Nature Conservation</topic><topic>Review Article</topic><topic>Reviews</topic><topic>Scientific papers</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foltête, Jean-Christophe</creatorcontrib><creatorcontrib>Savary, Paul</creatorcontrib><creatorcontrib>Clauzel, Céline</creatorcontrib><creatorcontrib>Bourgeois, Marc</creatorcontrib><creatorcontrib>Girardet, Xavier</creatorcontrib><creatorcontrib>Sahraoui, Yohan</creatorcontrib><creatorcontrib>Vuidel, Gilles</creatorcontrib><creatorcontrib>Garnier, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Landscape ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foltête, Jean-Christophe</au><au>Savary, Paul</au><au>Clauzel, Céline</au><au>Bourgeois, Marc</au><au>Girardet, Xavier</au><au>Sahraoui, Yohan</au><au>Vuidel, Gilles</au><au>Garnier, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling landscape graph modeling and biological data: a review</atitle><jtitle>Landscape ecology</jtitle><stitle>Landscape Ecol</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>1035</spage><epage>1052</epage><pages>1035-1052</pages><issn>0921-2973</issn><eissn>1572-9761</eissn><abstract>Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities. Objectives Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis. Methods We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies. Results Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity. Conclusions Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10980-020-00998-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4864-5660</orcidid><orcidid>https://orcid.org/0000-0001-6330-6136</orcidid><orcidid>https://orcid.org/0000-0002-3865-6158</orcidid><orcidid>https://orcid.org/0000-0002-7401-2771</orcidid><orcidid>https://orcid.org/0000-0002-2104-9941</orcidid><orcidid>https://orcid.org/0000-0001-6551-8749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-2973
ispartof Landscape ecology, 2020-05, Vol.35 (5), p.1035-1052
issn 0921-2973
1572-9761
language eng
recordid cdi_hal_primary_oai_HAL_halshs_02524370v1
source SpringerNature Journals
subjects Biodiversity and Ecology
Biomedical and Life Sciences
Coupling
Decisions
Disease spread
Ecology
Empirical analysis
Environmental Management
Environmental Sciences
Geography
Graphs
Humanities and Social Sciences
Land cover
Landscape
Landscape Ecology
Landscape/Regional and Urban Planning
Life Sciences
Nature Conservation
Review Article
Reviews
Scientific papers
Sustainable Development
title Coupling landscape graph modeling and biological data: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20landscape%20graph%20modeling%20and%20biological%20data:%20a%20review&rft.jtitle=Landscape%20ecology&rft.au=Folt%C3%AAte,%20Jean-Christophe&rft.date=2020-05-01&rft.volume=35&rft.issue=5&rft.spage=1035&rft.epage=1052&rft.pages=1035-1052&rft.issn=0921-2973&rft.eissn=1572-9761&rft_id=info:doi/10.1007/s10980-020-00998-7&rft_dat=%3Cproquest_hal_p%3E2405451822%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405451822&rft_id=info:pmid/&rfr_iscdi=true