Coupling landscape graph modeling and biological data: a review
Context Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to u...
Gespeichert in:
Veröffentlicht in: | Landscape ecology 2020-05, Vol.35 (5), p.1035-1052 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1052 |
---|---|
container_issue | 5 |
container_start_page | 1035 |
container_title | Landscape ecology |
container_volume | 35 |
creator | Foltête, Jean-Christophe Savary, Paul Clauzel, Céline Bourgeois, Marc Girardet, Xavier Sahraoui, Yohan Vuidel, Gilles Garnier, Stéphane |
description | Context
Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities.
Objectives
Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis.
Methods
We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies.
Results
Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity.
Conclusions
Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools. |
doi_str_mv | 10.1007/s10980-020-00998-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_02524370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2405451822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gisRJ4frbrmAVVFVCkSiwwW07ipKnSONhNEf8elyDYGE5PuvfdDUfIJYUbCiBvAwWVQQoYBUplqTwiEyokpkrO6DGZgEKaopLslJyFsAEAxgAm5H7hhr5tujppTVeGwvQ2qb3p18nWlfb7Ef0kb1zr6qYwbVKanblLTOLtvrEf5-SkMm2wFz93St4eH14Xy3T18vS8mK_SggPsUlphIUBJFEwommPOLSorsjxHA4pRVIwbzMyMMlHNKGBRci5zWQGXJuM5m5LrsXdtWt37Zmv8p3am0cv5SkcvrIMGFMiZhD2N-NWI9969Dzbs9MYNvoucRg6CC5ohRgpHqvAuBG-r32YK-rCrHneNzVGHXbWMITaGQoS72vq_6n9SX0rXd-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405451822</pqid></control><display><type>article</type><title>Coupling landscape graph modeling and biological data: a review</title><source>SpringerNature Journals</source><creator>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</creator><creatorcontrib>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</creatorcontrib><description>Context
Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities.
Objectives
Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis.
Methods
We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies.
Results
Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity.
Conclusions
Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</description><identifier>ISSN: 0921-2973</identifier><identifier>EISSN: 1572-9761</identifier><identifier>DOI: 10.1007/s10980-020-00998-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biodiversity and Ecology ; Biomedical and Life Sciences ; Coupling ; Decisions ; Disease spread ; Ecology ; Empirical analysis ; Environmental Management ; Environmental Sciences ; Geography ; Graphs ; Humanities and Social Sciences ; Land cover ; Landscape ; Landscape Ecology ; Landscape/Regional and Urban Planning ; Life Sciences ; Nature Conservation ; Review Article ; Reviews ; Scientific papers ; Sustainable Development</subject><ispartof>Landscape ecology, 2020-05, Vol.35 (5), p.1035-1052</ispartof><rights>Springer Nature B.V. 2020. corrected publication 2020</rights><rights>Springer Nature B.V. 2020. corrected publication 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</citedby><cites>FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</cites><orcidid>0000-0003-4864-5660 ; 0000-0001-6330-6136 ; 0000-0002-3865-6158 ; 0000-0002-7401-2771 ; 0000-0002-2104-9941 ; 0000-0001-6551-8749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10980-020-00998-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10980-020-00998-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://shs.hal.science/halshs-02524370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foltête, Jean-Christophe</creatorcontrib><creatorcontrib>Savary, Paul</creatorcontrib><creatorcontrib>Clauzel, Céline</creatorcontrib><creatorcontrib>Bourgeois, Marc</creatorcontrib><creatorcontrib>Girardet, Xavier</creatorcontrib><creatorcontrib>Sahraoui, Yohan</creatorcontrib><creatorcontrib>Vuidel, Gilles</creatorcontrib><creatorcontrib>Garnier, Stéphane</creatorcontrib><title>Coupling landscape graph modeling and biological data: a review</title><title>Landscape ecology</title><addtitle>Landscape Ecol</addtitle><description>Context
Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities.
Objectives
Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis.
Methods
We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies.
Results
Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity.
Conclusions
Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</description><subject>Biodiversity and Ecology</subject><subject>Biomedical and Life Sciences</subject><subject>Coupling</subject><subject>Decisions</subject><subject>Disease spread</subject><subject>Ecology</subject><subject>Empirical analysis</subject><subject>Environmental Management</subject><subject>Environmental Sciences</subject><subject>Geography</subject><subject>Graphs</subject><subject>Humanities and Social Sciences</subject><subject>Land cover</subject><subject>Landscape</subject><subject>Landscape Ecology</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Life Sciences</subject><subject>Nature Conservation</subject><subject>Review Article</subject><subject>Reviews</subject><subject>Scientific papers</subject><subject>Sustainable Development</subject><issn>0921-2973</issn><issn>1572-9761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAUhC0EEqXwB5gisRJ4frbrmAVVFVCkSiwwW07ipKnSONhNEf8elyDYGE5PuvfdDUfIJYUbCiBvAwWVQQoYBUplqTwiEyokpkrO6DGZgEKaopLslJyFsAEAxgAm5H7hhr5tujppTVeGwvQ2qb3p18nWlfb7Ef0kb1zr6qYwbVKanblLTOLtvrEf5-SkMm2wFz93St4eH14Xy3T18vS8mK_SggPsUlphIUBJFEwommPOLSorsjxHA4pRVIwbzMyMMlHNKGBRci5zWQGXJuM5m5LrsXdtWt37Zmv8p3am0cv5SkcvrIMGFMiZhD2N-NWI9969Dzbs9MYNvoucRg6CC5ohRgpHqvAuBG-r32YK-rCrHneNzVGHXbWMITaGQoS72vq_6n9SX0rXd-8</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Foltête, Jean-Christophe</creator><creator>Savary, Paul</creator><creator>Clauzel, Céline</creator><creator>Bourgeois, Marc</creator><creator>Girardet, Xavier</creator><creator>Sahraoui, Yohan</creator><creator>Vuidel, Gilles</creator><creator>Garnier, Stéphane</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4864-5660</orcidid><orcidid>https://orcid.org/0000-0001-6330-6136</orcidid><orcidid>https://orcid.org/0000-0002-3865-6158</orcidid><orcidid>https://orcid.org/0000-0002-7401-2771</orcidid><orcidid>https://orcid.org/0000-0002-2104-9941</orcidid><orcidid>https://orcid.org/0000-0001-6551-8749</orcidid></search><sort><creationdate>20200501</creationdate><title>Coupling landscape graph modeling and biological data: a review</title><author>Foltête, Jean-Christophe ; Savary, Paul ; Clauzel, Céline ; Bourgeois, Marc ; Girardet, Xavier ; Sahraoui, Yohan ; Vuidel, Gilles ; Garnier, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1f2c5097253591b2b4e29e58bb2a09312934a28a6135f6102cd447b7f047a84b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity and Ecology</topic><topic>Biomedical and Life Sciences</topic><topic>Coupling</topic><topic>Decisions</topic><topic>Disease spread</topic><topic>Ecology</topic><topic>Empirical analysis</topic><topic>Environmental Management</topic><topic>Environmental Sciences</topic><topic>Geography</topic><topic>Graphs</topic><topic>Humanities and Social Sciences</topic><topic>Land cover</topic><topic>Landscape</topic><topic>Landscape Ecology</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Life Sciences</topic><topic>Nature Conservation</topic><topic>Review Article</topic><topic>Reviews</topic><topic>Scientific papers</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foltête, Jean-Christophe</creatorcontrib><creatorcontrib>Savary, Paul</creatorcontrib><creatorcontrib>Clauzel, Céline</creatorcontrib><creatorcontrib>Bourgeois, Marc</creatorcontrib><creatorcontrib>Girardet, Xavier</creatorcontrib><creatorcontrib>Sahraoui, Yohan</creatorcontrib><creatorcontrib>Vuidel, Gilles</creatorcontrib><creatorcontrib>Garnier, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Landscape ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foltête, Jean-Christophe</au><au>Savary, Paul</au><au>Clauzel, Céline</au><au>Bourgeois, Marc</au><au>Girardet, Xavier</au><au>Sahraoui, Yohan</au><au>Vuidel, Gilles</au><au>Garnier, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling landscape graph modeling and biological data: a review</atitle><jtitle>Landscape ecology</jtitle><stitle>Landscape Ecol</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>1035</spage><epage>1052</epage><pages>1035-1052</pages><issn>0921-2973</issn><eissn>1572-9761</eissn><abstract>Context
Landscape graphs are widely used to model networks of habitat patches. As they require little input data, they are particularly suitable for supporting conservation decisions (and decisions about other issues as e.g. disease spread) taken by land planners. However, it may be problematic to use these methods in operational contexts without validating them with empirical data on species or communities.
Objectives
Since little is known about methodological alternatives for coupling landscape graphs with biological data, we have made an exhaustive review of these methods to analyze links between the main purposes of the studies, the way landscape graphs are constructed and used, the type of field data, and the way these data are integrated into the analysis.
Methods
We systematically describe a corpus of 71 scientific papers dealing with terrestrial species, with particular emphasis on methodological choices and contexts of the studies.
Results
Despite a great variability of types of biological data and coupling strategies, our analyses reveal a dichotomy according to the objective of the studies, between (i) approaches aimed at improving ecological knowledge, mainly based on land-cover maps and using biological data to test the influence of landscape connectivity on biological responses, and (ii) approaches with an operational aim, in which biological data are directly integrated into the graph construction and assuming a positive effect of connectivity.
Conclusions
Beyond these main contrasts, the review shows that landscape graphs can benefit from field data of different types at varying scales. The great variability of approaches adopted reveals the flexible nature of these tools.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10980-020-00998-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4864-5660</orcidid><orcidid>https://orcid.org/0000-0001-6330-6136</orcidid><orcidid>https://orcid.org/0000-0002-3865-6158</orcidid><orcidid>https://orcid.org/0000-0002-7401-2771</orcidid><orcidid>https://orcid.org/0000-0002-2104-9941</orcidid><orcidid>https://orcid.org/0000-0001-6551-8749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-2973 |
ispartof | Landscape ecology, 2020-05, Vol.35 (5), p.1035-1052 |
issn | 0921-2973 1572-9761 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_halshs_02524370v1 |
source | SpringerNature Journals |
subjects | Biodiversity and Ecology Biomedical and Life Sciences Coupling Decisions Disease spread Ecology Empirical analysis Environmental Management Environmental Sciences Geography Graphs Humanities and Social Sciences Land cover Landscape Landscape Ecology Landscape/Regional and Urban Planning Life Sciences Nature Conservation Review Article Reviews Scientific papers Sustainable Development |
title | Coupling landscape graph modeling and biological data: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20landscape%20graph%20modeling%20and%20biological%20data:%20a%20review&rft.jtitle=Landscape%20ecology&rft.au=Folt%C3%AAte,%20Jean-Christophe&rft.date=2020-05-01&rft.volume=35&rft.issue=5&rft.spage=1035&rft.epage=1052&rft.pages=1035-1052&rft.issn=0921-2973&rft.eissn=1572-9761&rft_id=info:doi/10.1007/s10980-020-00998-7&rft_dat=%3Cproquest_hal_p%3E2405451822%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2405451822&rft_id=info:pmid/&rfr_iscdi=true |