The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs

This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Energy journal (Cambridge, Mass.) Mass.), 2010-01, Vol.31 (1_suppl), p.11-48
Hauptverfasser: Edenhofer, Ottmar, Knopf, Brigitte, Barker, Terry, Baumstark, Lavinia, Bellevrat, Elie, Chateau, Bertrand, Criqui, Patrick, Isaac, Morna, Kitous, Alban, Kypreos, Socrates, Leimbach, Marian, Lessmann, Kai, Magné, Bertrand, Scrieciu, Şerban, Turton, Hal, van Vuuren, Detlef P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1_suppl
container_start_page 11
container_title The Energy journal (Cambridge, Mass.)
container_volume 31
creator Edenhofer, Ottmar
Knopf, Brigitte
Barker, Terry
Baumstark, Lavinia
Bellevrat, Elie
Chateau, Bertrand
Criqui, Patrick
Isaac, Morna
Kitous, Alban
Kypreos, Socrates
Leimbach, Marian
Lessmann, Kai
Magné, Bertrand
Scrieciu, Şerban
Turton, Hal
van Vuuren, Detlef P.
description This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO₂ eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO₂ eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO₂ eq stabilization and below 2.5% for the 400 ppm CO₂ eq pathway.
doi_str_mv 10.5547/issn0195-6574-ej-vol31-nosi-2
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_halshs_00450290v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41323490</jstor_id><sage_id>10.5547_ISSN0195-6574-EJ-Vol31-NoSI-2</sage_id><sourcerecordid>41323490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-e5bcdc19e9dacfbd51f5b1c3c7337c53886a2692d423b652055ae1e3952e11a23</originalsourceid><addsrcrecordid>eNqNkE1P4zAQhi0EEoXdn7BSJMQNgz-TGIkDqgoUFfZQlj1ajuO0rtK4eFIQ_HoSsirXnctIM887Hy9Cp5ScSymyCw_QEKokTmUmsFvh11BzipsAHrM9NKJKCKxIrvbRaMcdoiOAFelCZPkI_X1aumRiQxPW3kISqmQW3pJ5awpf-w_T-tBcJg-hdHUyDuuNiR5C02MPvvWLr35HR9O6hXeQmKbsOGjhBzqoTA3u5798jP7cTJ7Gd3j2-3Y6vp5hK1PRYicLW1qqnCqNrYpS0koW1HKbcZ5ZyfM8NSxVrBSMF6lkRErjqONKMkepYfwYnQ1zl6bWm-jXJr7rYLy-u57prgZL0N2rkjBFXmmHnwz4JoaXrYNWr8I2Nh2nOVF5RjLOREddDZSNASC6ajeZEt1br6fz-WNvqe4t1ZN7_dxbrx_DfKr7oy4HPZiF-97wv-Jfg3gFbYi7zYJyxoUi_BOOl5cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098707324</pqid></control><display><type>article</type><title>The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs</title><source>Access via SAGE</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Edenhofer, Ottmar ; Knopf, Brigitte ; Barker, Terry ; Baumstark, Lavinia ; Bellevrat, Elie ; Chateau, Bertrand ; Criqui, Patrick ; Isaac, Morna ; Kitous, Alban ; Kypreos, Socrates ; Leimbach, Marian ; Lessmann, Kai ; Magné, Bertrand ; Scrieciu, Şerban ; Turton, Hal ; van Vuuren, Detlef P.</creator><creatorcontrib>Edenhofer, Ottmar ; Knopf, Brigitte ; Barker, Terry ; Baumstark, Lavinia ; Bellevrat, Elie ; Chateau, Bertrand ; Criqui, Patrick ; Isaac, Morna ; Kitous, Alban ; Kypreos, Socrates ; Leimbach, Marian ; Lessmann, Kai ; Magné, Bertrand ; Scrieciu, Şerban ; Turton, Hal ; van Vuuren, Detlef P.</creatorcontrib><description>This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO₂ eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO₂ eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO₂ eq stabilization and below 2.5% for the 400 ppm CO₂ eq pathway.</description><identifier>ISSN: 0195-6574</identifier><identifier>EISSN: 1944-9089</identifier><identifier>DOI: 10.5547/issn0195-6574-ej-vol31-nosi-2</identifier><language>eng</language><publisher>Los Angeles, CA: Energy Economics Education Foundation, Inc</publisher><subject>Bioenergy ; Biofuels ; Biomass energy production ; Biomass production ; Carbon dioxide ; Climate change ; Climate models ; Economic costs ; Economic models ; Economics ; Economics and Finance ; Energy ; Energy costs ; Feasibility studies ; Global temperatures ; Greenhouse gases ; Humanities and Social Sciences ; Modeling ; Stabilization ; Technology assessment ; Timing devices</subject><ispartof>The Energy journal (Cambridge, Mass.), 2010-01, Vol.31 (1_suppl), p.11-48</ispartof><rights>Copyright © 2010 International Association for Energy Economics</rights><rights>The Author(s)</rights><rights>The Author(s). 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-e5bcdc19e9dacfbd51f5b1c3c7337c53886a2692d423b652055ae1e3952e11a23</citedby><cites>FETCH-LOGICAL-c564t-e5bcdc19e9dacfbd51f5b1c3c7337c53886a2692d423b652055ae1e3952e11a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41323490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41323490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,21819,27924,27925,43621,43622,58017,58250</link.rule.ids><backlink>$$Uhttps://shs.hal.science/halshs-00450290$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Edenhofer, Ottmar</creatorcontrib><creatorcontrib>Knopf, Brigitte</creatorcontrib><creatorcontrib>Barker, Terry</creatorcontrib><creatorcontrib>Baumstark, Lavinia</creatorcontrib><creatorcontrib>Bellevrat, Elie</creatorcontrib><creatorcontrib>Chateau, Bertrand</creatorcontrib><creatorcontrib>Criqui, Patrick</creatorcontrib><creatorcontrib>Isaac, Morna</creatorcontrib><creatorcontrib>Kitous, Alban</creatorcontrib><creatorcontrib>Kypreos, Socrates</creatorcontrib><creatorcontrib>Leimbach, Marian</creatorcontrib><creatorcontrib>Lessmann, Kai</creatorcontrib><creatorcontrib>Magné, Bertrand</creatorcontrib><creatorcontrib>Scrieciu, Şerban</creatorcontrib><creatorcontrib>Turton, Hal</creatorcontrib><creatorcontrib>van Vuuren, Detlef P.</creatorcontrib><title>The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs</title><title>The Energy journal (Cambridge, Mass.)</title><description>This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO₂ eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO₂ eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO₂ eq stabilization and below 2.5% for the 400 ppm CO₂ eq pathway.</description><subject>Bioenergy</subject><subject>Biofuels</subject><subject>Biomass energy production</subject><subject>Biomass production</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Economic costs</subject><subject>Economic models</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Energy</subject><subject>Energy costs</subject><subject>Feasibility studies</subject><subject>Global temperatures</subject><subject>Greenhouse gases</subject><subject>Humanities and Social Sciences</subject><subject>Modeling</subject><subject>Stabilization</subject><subject>Technology assessment</subject><subject>Timing devices</subject><issn>0195-6574</issn><issn>1944-9089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1P4zAQhi0EEoXdn7BSJMQNgz-TGIkDqgoUFfZQlj1ajuO0rtK4eFIQ_HoSsirXnctIM887Hy9Cp5ScSymyCw_QEKokTmUmsFvh11BzipsAHrM9NKJKCKxIrvbRaMcdoiOAFelCZPkI_X1aumRiQxPW3kISqmQW3pJ5awpf-w_T-tBcJg-hdHUyDuuNiR5C02MPvvWLr35HR9O6hXeQmKbsOGjhBzqoTA3u5798jP7cTJ7Gd3j2-3Y6vp5hK1PRYicLW1qqnCqNrYpS0koW1HKbcZ5ZyfM8NSxVrBSMF6lkRErjqONKMkepYfwYnQ1zl6bWm-jXJr7rYLy-u57prgZL0N2rkjBFXmmHnwz4JoaXrYNWr8I2Nh2nOVF5RjLOREddDZSNASC6ajeZEt1br6fz-WNvqe4t1ZN7_dxbrx_DfKr7oy4HPZiF-97wv-Jfg3gFbYi7zYJyxoUi_BOOl5cg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Edenhofer, Ottmar</creator><creator>Knopf, Brigitte</creator><creator>Barker, Terry</creator><creator>Baumstark, Lavinia</creator><creator>Bellevrat, Elie</creator><creator>Chateau, Bertrand</creator><creator>Criqui, Patrick</creator><creator>Isaac, Morna</creator><creator>Kitous, Alban</creator><creator>Kypreos, Socrates</creator><creator>Leimbach, Marian</creator><creator>Lessmann, Kai</creator><creator>Magné, Bertrand</creator><creator>Scrieciu, Şerban</creator><creator>Turton, Hal</creator><creator>van Vuuren, Detlef P.</creator><general>Energy Economics Education Foundation, Inc</general><general>SAGE Publications</general><general>International Association for Energy Economics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>BXJBU</scope></search><sort><creationdate>20100101</creationdate><title>The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs</title><author>Edenhofer, Ottmar ; Knopf, Brigitte ; Barker, Terry ; Baumstark, Lavinia ; Bellevrat, Elie ; Chateau, Bertrand ; Criqui, Patrick ; Isaac, Morna ; Kitous, Alban ; Kypreos, Socrates ; Leimbach, Marian ; Lessmann, Kai ; Magné, Bertrand ; Scrieciu, Şerban ; Turton, Hal ; van Vuuren, Detlef P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-e5bcdc19e9dacfbd51f5b1c3c7337c53886a2692d423b652055ae1e3952e11a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bioenergy</topic><topic>Biofuels</topic><topic>Biomass energy production</topic><topic>Biomass production</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Economic costs</topic><topic>Economic models</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Energy</topic><topic>Energy costs</topic><topic>Feasibility studies</topic><topic>Global temperatures</topic><topic>Greenhouse gases</topic><topic>Humanities and Social Sciences</topic><topic>Modeling</topic><topic>Stabilization</topic><topic>Technology assessment</topic><topic>Timing devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edenhofer, Ottmar</creatorcontrib><creatorcontrib>Knopf, Brigitte</creatorcontrib><creatorcontrib>Barker, Terry</creatorcontrib><creatorcontrib>Baumstark, Lavinia</creatorcontrib><creatorcontrib>Bellevrat, Elie</creatorcontrib><creatorcontrib>Chateau, Bertrand</creatorcontrib><creatorcontrib>Criqui, Patrick</creatorcontrib><creatorcontrib>Isaac, Morna</creatorcontrib><creatorcontrib>Kitous, Alban</creatorcontrib><creatorcontrib>Kypreos, Socrates</creatorcontrib><creatorcontrib>Leimbach, Marian</creatorcontrib><creatorcontrib>Lessmann, Kai</creatorcontrib><creatorcontrib>Magné, Bertrand</creatorcontrib><creatorcontrib>Scrieciu, Şerban</creatorcontrib><creatorcontrib>Turton, Hal</creatorcontrib><creatorcontrib>van Vuuren, Detlef P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>The Energy journal (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edenhofer, Ottmar</au><au>Knopf, Brigitte</au><au>Barker, Terry</au><au>Baumstark, Lavinia</au><au>Bellevrat, Elie</au><au>Chateau, Bertrand</au><au>Criqui, Patrick</au><au>Isaac, Morna</au><au>Kitous, Alban</au><au>Kypreos, Socrates</au><au>Leimbach, Marian</au><au>Lessmann, Kai</au><au>Magné, Bertrand</au><au>Scrieciu, Şerban</au><au>Turton, Hal</au><au>van Vuuren, Detlef P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs</atitle><jtitle>The Energy journal (Cambridge, Mass.)</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>31</volume><issue>1_suppl</issue><spage>11</spage><epage>48</epage><pages>11-48</pages><issn>0195-6574</issn><eissn>1944-9089</eissn><abstract>This study gives a synthesis of a model comparison assessing the technological feasibility and economic consequences of achieving greenhouse gas concentration targets that are sufficiently low to keep the increase in global mean temperature below 2 degrees Celsius above pre-industrial levels. All five global energy-environment-economy models show that achieving low greenhouse gas concentration targets is technically feasible and economically viable. The ranking of the importance of individual technology options is robust across models. For the lowest stabilization target (400 ppm CO₂ eq), the use of bio-energy in combination with CCS plays a crucial role, and biomass potential dominates the cost of reaching this target. Without CCS or the considerable extension of renewables the 400 ppm CO₂ eq target is not achievable. Across the models, estimated aggregate costs up to 2100 are below 0.8% global GDP for 550 ppm CO₂ eq stabilization and below 2.5% for the 400 ppm CO₂ eq pathway.</abstract><cop>Los Angeles, CA</cop><pub>Energy Economics Education Foundation, Inc</pub><doi>10.5547/issn0195-6574-ej-vol31-nosi-2</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-6574
ispartof The Energy journal (Cambridge, Mass.), 2010-01, Vol.31 (1_suppl), p.11-48
issn 0195-6574
1944-9089
language eng
recordid cdi_hal_primary_oai_HAL_halshs_00450290v1
source Access via SAGE; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Bioenergy
Biofuels
Biomass energy production
Biomass production
Carbon dioxide
Climate change
Climate models
Economic costs
Economic models
Economics
Economics and Finance
Energy
Energy costs
Feasibility studies
Global temperatures
Greenhouse gases
Humanities and Social Sciences
Modeling
Stabilization
Technology assessment
Timing devices
title The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Economics%20of%20Low%20Stabilization:%20Model%20Comparison%20of%20Mitigation%20Strategies%20and%20Costs&rft.jtitle=The%20Energy%20journal%20(Cambridge,%20Mass.)&rft.au=Edenhofer,%20Ottmar&rft.date=2010-01-01&rft.volume=31&rft.issue=1_suppl&rft.spage=11&rft.epage=48&rft.pages=11-48&rft.issn=0195-6574&rft.eissn=1944-9089&rft_id=info:doi/10.5547/issn0195-6574-ej-vol31-nosi-2&rft_dat=%3Cjstor_hal_p%3E41323490%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098707324&rft_id=info:pmid/&rft_jstor_id=41323490&rft_sage_id=10.5547_ISSN0195-6574-EJ-Vol31-NoSI-2&rfr_iscdi=true