A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil

The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HLA 2024-06, Vol.103 (6), p.e15543-n/a
Hauptverfasser: Silva, Nayane S. B., Bourguiba‐Hachemi, Sonia, Ciriaco, Viviane A. O., Knorst, Stefan H. Y., Carmo, Ramon T., Masotti, Cibele, Meyer, Diogo, Naslavsky, Michel S., Duarte, Yeda A. O., Zatz, Mayana, Gourraud, Pierre‐Antoine, Limou, Sophie, Castelli, Erick C., Vince, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e15543
container_title HLA
container_volume 103
creator Silva, Nayane S. B.
Bourguiba‐Hachemi, Sonia
Ciriaco, Viviane A. O.
Knorst, Stefan H. Y.
Carmo, Ramon T.
Masotti, Cibele
Meyer, Diogo
Naslavsky, Michel S.
Duarte, Yeda A. O.
Zatz, Mayana
Gourraud, Pierre‐Antoine
Limou, Sophie
Castelli, Erick C.
Vince, Nicolas
description The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.
doi_str_mv 10.1111/tan.15543
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04907532v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TAN15543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</originalsourceid><addsrcrecordid>eNp1kU1OwzAUhC0EAgQsuAB6WxYttlPnh12ogCJVsCnr6NV5oZYcJ0pSoKw4AhfhUpwE00CRkPDGo9E3s3jD2LHgQ-HfWYduKJQaBVtsX3KVDGQg-PZGc7nHjtrWzLkMk4iHUbLL9oI4DqI4lPvsPYVyaTvz8fpG3cIZDQ0V1JDTBDU6stBVYMp62RFMpiloi75MowV0ObjK-eCvt1ZwA2gtWWrBOMC8NM-UQ4tl7a1zmFHbGffQl2JnKs9ovWxQr9b83wgUTVXCRYMvxh6ynQJtS0ff_wG7v7qcjSeD6d31zTidDnTgDzEo8nkuZDgvKFaS4tFI51yqMORKF1zzWIRCIYokQiW5xkApjBA1hQmn3KvggJ32vQu0Wd2YEptVVqHJJuk0-_L4KOGRCuSj-GV1U7Wtv94mIHj2tVDmF8rWC3n2pGfr5bykfEP-7OGBsx54MpZW_zdls_S2r_wEmy6e5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</creator><creatorcontrib>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</creatorcontrib><description>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</description><identifier>ISSN: 2059-2302</identifier><identifier>EISSN: 2059-2310</identifier><identifier>DOI: 10.1111/tan.15543</identifier><identifier>PMID: 38837862</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Admixed Population ; Alleles ; Brazil ; Computational Biology - methods ; Ethnicity - genetics ; Gene Frequency ; Genetics, Population - methods ; Genome-Wide Association Study - methods ; Genotype ; Histocompatibility Antigens Class I - genetics ; HLA Antigens - genetics ; HLA class I ; HLA imputation ; Humans ; Life Sciences ; Linkage Disequilibrium ; Polymorphism, Single Nucleotide ; Reference Panel</subject><ispartof>HLA, 2024-06, Vol.103 (6), p.e15543-n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). HLA: Immune Response Genetics published by John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</cites><orcidid>0000-0001-5511-8426 ; 0000-0002-3767-6210 ; 0000-0003-1131-9554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftan.15543$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftan.15543$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04907532$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Nayane S. B.</creatorcontrib><creatorcontrib>Bourguiba‐Hachemi, Sonia</creatorcontrib><creatorcontrib>Ciriaco, Viviane A. O.</creatorcontrib><creatorcontrib>Knorst, Stefan H. Y.</creatorcontrib><creatorcontrib>Carmo, Ramon T.</creatorcontrib><creatorcontrib>Masotti, Cibele</creatorcontrib><creatorcontrib>Meyer, Diogo</creatorcontrib><creatorcontrib>Naslavsky, Michel S.</creatorcontrib><creatorcontrib>Duarte, Yeda A. O.</creatorcontrib><creatorcontrib>Zatz, Mayana</creatorcontrib><creatorcontrib>Gourraud, Pierre‐Antoine</creatorcontrib><creatorcontrib>Limou, Sophie</creatorcontrib><creatorcontrib>Castelli, Erick C.</creatorcontrib><creatorcontrib>Vince, Nicolas</creatorcontrib><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><title>HLA</title><addtitle>HLA</addtitle><description>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</description><subject>Admixed Population</subject><subject>Alleles</subject><subject>Brazil</subject><subject>Computational Biology - methods</subject><subject>Ethnicity - genetics</subject><subject>Gene Frequency</subject><subject>Genetics, Population - methods</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>HLA Antigens - genetics</subject><subject>HLA class I</subject><subject>HLA imputation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Reference Panel</subject><issn>2059-2302</issn><issn>2059-2310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1OwzAUhC0EAgQsuAB6WxYttlPnh12ogCJVsCnr6NV5oZYcJ0pSoKw4AhfhUpwE00CRkPDGo9E3s3jD2LHgQ-HfWYduKJQaBVtsX3KVDGQg-PZGc7nHjtrWzLkMk4iHUbLL9oI4DqI4lPvsPYVyaTvz8fpG3cIZDQ0V1JDTBDU6stBVYMp62RFMpiloi75MowV0ObjK-eCvt1ZwA2gtWWrBOMC8NM-UQ4tl7a1zmFHbGffQl2JnKs9ovWxQr9b83wgUTVXCRYMvxh6ynQJtS0ff_wG7v7qcjSeD6d31zTidDnTgDzEo8nkuZDgvKFaS4tFI51yqMORKF1zzWIRCIYokQiW5xkApjBA1hQmn3KvggJ32vQu0Wd2YEptVVqHJJuk0-_L4KOGRCuSj-GV1U7Wtv94mIHj2tVDmF8rWC3n2pGfr5bykfEP-7OGBsx54MpZW_zdls_S2r_wEmy6e5Q</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Silva, Nayane S. B.</creator><creator>Bourguiba‐Hachemi, Sonia</creator><creator>Ciriaco, Viviane A. O.</creator><creator>Knorst, Stefan H. Y.</creator><creator>Carmo, Ramon T.</creator><creator>Masotti, Cibele</creator><creator>Meyer, Diogo</creator><creator>Naslavsky, Michel S.</creator><creator>Duarte, Yeda A. O.</creator><creator>Zatz, Mayana</creator><creator>Gourraud, Pierre‐Antoine</creator><creator>Limou, Sophie</creator><creator>Castelli, Erick C.</creator><creator>Vince, Nicolas</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5511-8426</orcidid><orcidid>https://orcid.org/0000-0002-3767-6210</orcidid><orcidid>https://orcid.org/0000-0003-1131-9554</orcidid></search><sort><creationdate>202406</creationdate><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><author>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Admixed Population</topic><topic>Alleles</topic><topic>Brazil</topic><topic>Computational Biology - methods</topic><topic>Ethnicity - genetics</topic><topic>Gene Frequency</topic><topic>Genetics, Population - methods</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>HLA Antigens - genetics</topic><topic>HLA class I</topic><topic>HLA imputation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Reference Panel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Nayane S. B.</creatorcontrib><creatorcontrib>Bourguiba‐Hachemi, Sonia</creatorcontrib><creatorcontrib>Ciriaco, Viviane A. O.</creatorcontrib><creatorcontrib>Knorst, Stefan H. Y.</creatorcontrib><creatorcontrib>Carmo, Ramon T.</creatorcontrib><creatorcontrib>Masotti, Cibele</creatorcontrib><creatorcontrib>Meyer, Diogo</creatorcontrib><creatorcontrib>Naslavsky, Michel S.</creatorcontrib><creatorcontrib>Duarte, Yeda A. O.</creatorcontrib><creatorcontrib>Zatz, Mayana</creatorcontrib><creatorcontrib>Gourraud, Pierre‐Antoine</creatorcontrib><creatorcontrib>Limou, Sophie</creatorcontrib><creatorcontrib>Castelli, Erick C.</creatorcontrib><creatorcontrib>Vince, Nicolas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>HLA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Nayane S. B.</au><au>Bourguiba‐Hachemi, Sonia</au><au>Ciriaco, Viviane A. O.</au><au>Knorst, Stefan H. Y.</au><au>Carmo, Ramon T.</au><au>Masotti, Cibele</au><au>Meyer, Diogo</au><au>Naslavsky, Michel S.</au><au>Duarte, Yeda A. O.</au><au>Zatz, Mayana</au><au>Gourraud, Pierre‐Antoine</au><au>Limou, Sophie</au><au>Castelli, Erick C.</au><au>Vince, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</atitle><jtitle>HLA</jtitle><addtitle>HLA</addtitle><date>2024-06</date><risdate>2024</risdate><volume>103</volume><issue>6</issue><spage>e15543</spage><epage>n/a</epage><pages>e15543-n/a</pages><issn>2059-2302</issn><eissn>2059-2310</eissn><abstract>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>38837862</pmid><doi>10.1111/tan.15543</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5511-8426</orcidid><orcidid>https://orcid.org/0000-0002-3767-6210</orcidid><orcidid>https://orcid.org/0000-0003-1131-9554</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2059-2302
ispartof HLA, 2024-06, Vol.103 (6), p.e15543-n/a
issn 2059-2302
2059-2310
language eng
recordid cdi_hal_primary_oai_HAL_hal_04907532v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Admixed Population
Alleles
Brazil
Computational Biology - methods
Ethnicity - genetics
Gene Frequency
Genetics, Population - methods
Genome-Wide Association Study - methods
Genotype
Histocompatibility Antigens Class I - genetics
HLA Antigens - genetics
HLA class I
HLA imputation
Humans
Life Sciences
Linkage Disequilibrium
Polymorphism, Single Nucleotide
Reference Panel
title A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi%E2%80%90ethnic%20reference%20panel%20to%20impute%20HLA%20classical%20and%20non%E2%80%90classical%20class%20I%20alleles%20in%20admixed%20samples:%20Testing%20imputation%20accuracy%20in%20an%20admixed%20sample%20from%20Brazil&rft.jtitle=HLA&rft.au=Silva,%20Nayane%20S.%20B.&rft.date=2024-06&rft.volume=103&rft.issue=6&rft.spage=e15543&rft.epage=n/a&rft.pages=e15543-n/a&rft.issn=2059-2302&rft.eissn=2059-2310&rft_id=info:doi/10.1111/tan.15543&rft_dat=%3Cwiley_hal_p%3ETAN15543%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38837862&rfr_iscdi=true