A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil
The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations...
Gespeichert in:
Veröffentlicht in: | HLA 2024-06, Vol.103 (6), p.e15543-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e15543 |
container_title | HLA |
container_volume | 103 |
creator | Silva, Nayane S. B. Bourguiba‐Hachemi, Sonia Ciriaco, Viviane A. O. Knorst, Stefan H. Y. Carmo, Ramon T. Masotti, Cibele Meyer, Diogo Naslavsky, Michel S. Duarte, Yeda A. O. Zatz, Mayana Gourraud, Pierre‐Antoine Limou, Sophie Castelli, Erick C. Vince, Nicolas |
description | The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations. |
doi_str_mv | 10.1111/tan.15543 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04907532v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>TAN15543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</originalsourceid><addsrcrecordid>eNp1kU1OwzAUhC0EAgQsuAB6WxYttlPnh12ogCJVsCnr6NV5oZYcJ0pSoKw4AhfhUpwE00CRkPDGo9E3s3jD2LHgQ-HfWYduKJQaBVtsX3KVDGQg-PZGc7nHjtrWzLkMk4iHUbLL9oI4DqI4lPvsPYVyaTvz8fpG3cIZDQ0V1JDTBDU6stBVYMp62RFMpiloi75MowV0ObjK-eCvt1ZwA2gtWWrBOMC8NM-UQ4tl7a1zmFHbGffQl2JnKs9ovWxQr9b83wgUTVXCRYMvxh6ynQJtS0ff_wG7v7qcjSeD6d31zTidDnTgDzEo8nkuZDgvKFaS4tFI51yqMORKF1zzWIRCIYokQiW5xkApjBA1hQmn3KvggJ32vQu0Wd2YEptVVqHJJuk0-_L4KOGRCuSj-GV1U7Wtv94mIHj2tVDmF8rWC3n2pGfr5bykfEP-7OGBsx54MpZW_zdls_S2r_wEmy6e5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</creator><creatorcontrib>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</creatorcontrib><description>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</description><identifier>ISSN: 2059-2302</identifier><identifier>EISSN: 2059-2310</identifier><identifier>DOI: 10.1111/tan.15543</identifier><identifier>PMID: 38837862</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Admixed Population ; Alleles ; Brazil ; Computational Biology - methods ; Ethnicity - genetics ; Gene Frequency ; Genetics, Population - methods ; Genome-Wide Association Study - methods ; Genotype ; Histocompatibility Antigens Class I - genetics ; HLA Antigens - genetics ; HLA class I ; HLA imputation ; Humans ; Life Sciences ; Linkage Disequilibrium ; Polymorphism, Single Nucleotide ; Reference Panel</subject><ispartof>HLA, 2024-06, Vol.103 (6), p.e15543-n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). HLA: Immune Response Genetics published by John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</cites><orcidid>0000-0001-5511-8426 ; 0000-0002-3767-6210 ; 0000-0003-1131-9554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftan.15543$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftan.15543$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04907532$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Nayane S. B.</creatorcontrib><creatorcontrib>Bourguiba‐Hachemi, Sonia</creatorcontrib><creatorcontrib>Ciriaco, Viviane A. O.</creatorcontrib><creatorcontrib>Knorst, Stefan H. Y.</creatorcontrib><creatorcontrib>Carmo, Ramon T.</creatorcontrib><creatorcontrib>Masotti, Cibele</creatorcontrib><creatorcontrib>Meyer, Diogo</creatorcontrib><creatorcontrib>Naslavsky, Michel S.</creatorcontrib><creatorcontrib>Duarte, Yeda A. O.</creatorcontrib><creatorcontrib>Zatz, Mayana</creatorcontrib><creatorcontrib>Gourraud, Pierre‐Antoine</creatorcontrib><creatorcontrib>Limou, Sophie</creatorcontrib><creatorcontrib>Castelli, Erick C.</creatorcontrib><creatorcontrib>Vince, Nicolas</creatorcontrib><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><title>HLA</title><addtitle>HLA</addtitle><description>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</description><subject>Admixed Population</subject><subject>Alleles</subject><subject>Brazil</subject><subject>Computational Biology - methods</subject><subject>Ethnicity - genetics</subject><subject>Gene Frequency</subject><subject>Genetics, Population - methods</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genotype</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>HLA Antigens - genetics</subject><subject>HLA class I</subject><subject>HLA imputation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Reference Panel</subject><issn>2059-2302</issn><issn>2059-2310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1OwzAUhC0EAgQsuAB6WxYttlPnh12ogCJVsCnr6NV5oZYcJ0pSoKw4AhfhUpwE00CRkPDGo9E3s3jD2LHgQ-HfWYduKJQaBVtsX3KVDGQg-PZGc7nHjtrWzLkMk4iHUbLL9oI4DqI4lPvsPYVyaTvz8fpG3cIZDQ0V1JDTBDU6stBVYMp62RFMpiloi75MowV0ObjK-eCvt1ZwA2gtWWrBOMC8NM-UQ4tl7a1zmFHbGffQl2JnKs9ovWxQr9b83wgUTVXCRYMvxh6ynQJtS0ff_wG7v7qcjSeD6d31zTidDnTgDzEo8nkuZDgvKFaS4tFI51yqMORKF1zzWIRCIYokQiW5xkApjBA1hQmn3KvggJ32vQu0Wd2YEptVVqHJJuk0-_L4KOGRCuSj-GV1U7Wtv94mIHj2tVDmF8rWC3n2pGfr5bykfEP-7OGBsx54MpZW_zdls_S2r_wEmy6e5Q</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Silva, Nayane S. B.</creator><creator>Bourguiba‐Hachemi, Sonia</creator><creator>Ciriaco, Viviane A. O.</creator><creator>Knorst, Stefan H. Y.</creator><creator>Carmo, Ramon T.</creator><creator>Masotti, Cibele</creator><creator>Meyer, Diogo</creator><creator>Naslavsky, Michel S.</creator><creator>Duarte, Yeda A. O.</creator><creator>Zatz, Mayana</creator><creator>Gourraud, Pierre‐Antoine</creator><creator>Limou, Sophie</creator><creator>Castelli, Erick C.</creator><creator>Vince, Nicolas</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5511-8426</orcidid><orcidid>https://orcid.org/0000-0002-3767-6210</orcidid><orcidid>https://orcid.org/0000-0003-1131-9554</orcidid></search><sort><creationdate>202406</creationdate><title>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</title><author>Silva, Nayane S. B. ; Bourguiba‐Hachemi, Sonia ; Ciriaco, Viviane A. O. ; Knorst, Stefan H. Y. ; Carmo, Ramon T. ; Masotti, Cibele ; Meyer, Diogo ; Naslavsky, Michel S. ; Duarte, Yeda A. O. ; Zatz, Mayana ; Gourraud, Pierre‐Antoine ; Limou, Sophie ; Castelli, Erick C. ; Vince, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-fdbd126bfe852e844cd0256605cf0c081615aa197a520ca355a7aace690ed7aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Admixed Population</topic><topic>Alleles</topic><topic>Brazil</topic><topic>Computational Biology - methods</topic><topic>Ethnicity - genetics</topic><topic>Gene Frequency</topic><topic>Genetics, Population - methods</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genotype</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>HLA Antigens - genetics</topic><topic>HLA class I</topic><topic>HLA imputation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Reference Panel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Nayane S. B.</creatorcontrib><creatorcontrib>Bourguiba‐Hachemi, Sonia</creatorcontrib><creatorcontrib>Ciriaco, Viviane A. O.</creatorcontrib><creatorcontrib>Knorst, Stefan H. Y.</creatorcontrib><creatorcontrib>Carmo, Ramon T.</creatorcontrib><creatorcontrib>Masotti, Cibele</creatorcontrib><creatorcontrib>Meyer, Diogo</creatorcontrib><creatorcontrib>Naslavsky, Michel S.</creatorcontrib><creatorcontrib>Duarte, Yeda A. O.</creatorcontrib><creatorcontrib>Zatz, Mayana</creatorcontrib><creatorcontrib>Gourraud, Pierre‐Antoine</creatorcontrib><creatorcontrib>Limou, Sophie</creatorcontrib><creatorcontrib>Castelli, Erick C.</creatorcontrib><creatorcontrib>Vince, Nicolas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>HLA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Nayane S. B.</au><au>Bourguiba‐Hachemi, Sonia</au><au>Ciriaco, Viviane A. O.</au><au>Knorst, Stefan H. Y.</au><au>Carmo, Ramon T.</au><au>Masotti, Cibele</au><au>Meyer, Diogo</au><au>Naslavsky, Michel S.</au><au>Duarte, Yeda A. O.</au><au>Zatz, Mayana</au><au>Gourraud, Pierre‐Antoine</au><au>Limou, Sophie</au><au>Castelli, Erick C.</au><au>Vince, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil</atitle><jtitle>HLA</jtitle><addtitle>HLA</addtitle><date>2024-06</date><risdate>2024</risdate><volume>103</volume><issue>6</issue><spage>e15543</spage><epage>n/a</epage><pages>e15543-n/a</pages><issn>2059-2302</issn><eissn>2059-2310</eissn><abstract>The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome‐wide association studies have identified numerous disease‐associated SNPs within this region. However, these associations do not fully capture the immune‐biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi‐ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole‐genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross‐validation of these reference panels, the multi‐ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non‐classical, MICA, MICB and HLA‐H genes, previously unavailable for multi‐ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA‐B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>38837862</pmid><doi>10.1111/tan.15543</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5511-8426</orcidid><orcidid>https://orcid.org/0000-0002-3767-6210</orcidid><orcidid>https://orcid.org/0000-0003-1131-9554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-2302 |
ispartof | HLA, 2024-06, Vol.103 (6), p.e15543-n/a |
issn | 2059-2302 2059-2310 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04907532v1 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Admixed Population Alleles Brazil Computational Biology - methods Ethnicity - genetics Gene Frequency Genetics, Population - methods Genome-Wide Association Study - methods Genotype Histocompatibility Antigens Class I - genetics HLA Antigens - genetics HLA class I HLA imputation Humans Life Sciences Linkage Disequilibrium Polymorphism, Single Nucleotide Reference Panel |
title | A multi‐ethnic reference panel to impute HLA classical and non‐classical class I alleles in admixed samples: Testing imputation accuracy in an admixed sample from Brazil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi%E2%80%90ethnic%20reference%20panel%20to%20impute%20HLA%20classical%20and%20non%E2%80%90classical%20class%20I%20alleles%20in%20admixed%20samples:%20Testing%20imputation%20accuracy%20in%20an%20admixed%20sample%20from%20Brazil&rft.jtitle=HLA&rft.au=Silva,%20Nayane%20S.%20B.&rft.date=2024-06&rft.volume=103&rft.issue=6&rft.spage=e15543&rft.epage=n/a&rft.pages=e15543-n/a&rft.issn=2059-2302&rft.eissn=2059-2310&rft_id=info:doi/10.1111/tan.15543&rft_dat=%3Cwiley_hal_p%3ETAN15543%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38837862&rfr_iscdi=true |