A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers
PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure character...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 11 |
container_start_page | 113 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 37 |
creator | Rault, Jacques |
description | PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars
P
(
V
) have a fan structure characterized by the two parameters T
*
and V
*
; b) the isotherms verify the principle of temperature-pressure superposition for
P
<
P
*
. From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), (
V
−
V
*
) = (
V
0 −
V
*
)
P
*
/(
P
+
P
*
) . The characteristic pressure P
*
and the covolume V
*
are
T
and
P
independent. In polymer glass formers P
*
and V
*
have same values in the
α
(melt) and
β
(glass) domains. The characteristic temperatures
T
*
deduced from the Fan Structure of the Isobar (FSIb) above and below
T
g
are different. The characteristic temperature
T
*
(
α
) of the melt state is found near the Vogel temperature
T
0
for linear polymers and more than 100 K below
T
0
for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the
β
motions due to the pendent groups. The independence of
T
0
on
P
is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time
τ
of the
α
motions as a function of
P
and
T
is proposed. The fan structure of the isotherm log
τ versus P
is explained. It is shown that organic non-polymeric liquids (C
6
H
12
, C
6
H
14
, DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO
2
, Se, GeSe
4
, GeSe
2
, GeO
2
, As
2
O
3
and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation
P
*
=
B
0
/
γ
B
among the characteristic pressure
P
*
, the zero-pressure modulus
B
0
and the Slatter-Grüneisen anharmonicity parameter
γ
B
deduced from the VW-EOS, is observed in all the glass formers.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2014-14113-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04882796v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626166254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0Eom3gD3BAviDBYVuPvbv2cosqaCtFogcQ3KzJ2i6Odu3U3o3Uf4_ThHDjNKOZb56t9wh5B-wSoGZXdruxV54zqCuoAUQlXpBz4B2vVNf8ennqazgjFzlvGCsoE6_JGW9KVUKcE72kc_A7mzIOdIzGO28N3WGgxib6E3HI1D7OOPkYaHQ0TzjZS3qPaaJ3n-l9HJ7GAmIwdPTBpqLyMGDO1MVUFvkNeeWKhn17rAvy4-uX79e31erbzd31clX15edTVQun0IEB6epGCcU7pYywjVp3hjW2R8dAKikR1uAUONPVvW2kBCckN0aKBfl00P2Ng94mP2J60hG9vl2u9H7GaqW47NodFPbjgd2m-DjbPOnR594OAwYb56yh5S20bTGpoPyA9inmnKw7aQPT-xD0PgT9HIJ-DkGLcvT-qD-vR2tOJ39dL8CHI4C5x8ElDL3P_7iOKQHFhgURBy6XVXiwSW_inELx8X_P_wGrI5-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626166254</pqid></control><display><type>article</type><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rault, Jacques</creator><creatorcontrib>Rault, Jacques</creatorcontrib><description>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars
P
(
V
) have a fan structure characterized by the two parameters T
*
and V
*
; b) the isotherms verify the principle of temperature-pressure superposition for
P
<
P
*
. From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), (
V
−
V
*
) = (
V
0 −
V
*
)
P
*
/(
P
+
P
*
) . The characteristic pressure P
*
and the covolume V
*
are
T
and
P
independent. In polymer glass formers P
*
and V
*
have same values in the
α
(melt) and
β
(glass) domains. The characteristic temperatures
T
*
deduced from the Fan Structure of the Isobar (FSIb) above and below
T
g
are different. The characteristic temperature
T
*
(
α
) of the melt state is found near the Vogel temperature
T
0
for linear polymers and more than 100 K below
T
0
for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the
β
motions due to the pendent groups. The independence of
T
0
on
P
is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time
τ
of the
α
motions as a function of
P
and
T
is proposed. The fan structure of the isotherm log
τ versus P
is explained. It is shown that organic non-polymeric liquids (C
6
H
12
, C
6
H
14
, DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO
2
, Se, GeSe
4
, GeSe
2
, GeO
2
, As
2
O
3
and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation
P
*
=
B
0
/
γ
B
among the characteristic pressure
P
*
, the zero-pressure modulus
B
0
and the Slatter-Grüneisen anharmonicity parameter
γ
B
deduced from the VW-EOS, is observed in all the glass formers.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2014-14113-3</identifier><identifier>PMID: 25403833</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemical thermodynamics ; Chemistry ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed Matter ; Exact sciences and technology ; General and physical chemistry ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</citedby><cites>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2014-14113-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2014-14113-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29083158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25403833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04882796$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rault, Jacques</creatorcontrib><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars
P
(
V
) have a fan structure characterized by the two parameters T
*
and V
*
; b) the isotherms verify the principle of temperature-pressure superposition for
P
<
P
*
. From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), (
V
−
V
*
) = (
V
0 −
V
*
)
P
*
/(
P
+
P
*
) . The characteristic pressure P
*
and the covolume V
*
are
T
and
P
independent. In polymer glass formers P
*
and V
*
have same values in the
α
(melt) and
β
(glass) domains. The characteristic temperatures
T
*
deduced from the Fan Structure of the Isobar (FSIb) above and below
T
g
are different. The characteristic temperature
T
*
(
α
) of the melt state is found near the Vogel temperature
T
0
for linear polymers and more than 100 K below
T
0
for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the
β
motions due to the pendent groups. The independence of
T
0
on
P
is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time
τ
of the
α
motions as a function of
P
and
T
is proposed. The fan structure of the isotherm log
τ versus P
is explained. It is shown that organic non-polymeric liquids (C
6
H
12
, C
6
H
14
, DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO
2
, Se, GeSe
4
, GeSe
2
, GeO
2
, As
2
O
3
and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation
P
*
=
B
0
/
γ
B
among the characteristic pressure
P
*
, the zero-pressure modulus
B
0
and the Slatter-Grüneisen anharmonicity parameter
γ
B
deduced from the VW-EOS, is observed in all the glass formers.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS0Eom3gD3BAviDBYVuPvbv2cosqaCtFogcQ3KzJ2i6Odu3U3o3Uf4_ThHDjNKOZb56t9wh5B-wSoGZXdruxV54zqCuoAUQlXpBz4B2vVNf8ennqazgjFzlvGCsoE6_JGW9KVUKcE72kc_A7mzIOdIzGO28N3WGgxib6E3HI1D7OOPkYaHQ0TzjZS3qPaaJ3n-l9HJ7GAmIwdPTBpqLyMGDO1MVUFvkNeeWKhn17rAvy4-uX79e31erbzd31clX15edTVQun0IEB6epGCcU7pYywjVp3hjW2R8dAKikR1uAUONPVvW2kBCckN0aKBfl00P2Ng94mP2J60hG9vl2u9H7GaqW47NodFPbjgd2m-DjbPOnR594OAwYb56yh5S20bTGpoPyA9inmnKw7aQPT-xD0PgT9HIJ-DkGLcvT-qD-vR2tOJ39dL8CHI4C5x8ElDL3P_7iOKQHFhgURBy6XVXiwSW_inELx8X_P_wGrI5-k</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Rault, Jacques</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201411</creationdate><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><author>Rault, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rault, Jacques</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rault, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2014-11</date><risdate>2014</risdate><volume>37</volume><issue>11</issue><spage>113</spage><epage>113</epage><pages>113-113</pages><artnum>113</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars
P
(
V
) have a fan structure characterized by the two parameters T
*
and V
*
; b) the isotherms verify the principle of temperature-pressure superposition for
P
<
P
*
. From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), (
V
−
V
*
) = (
V
0 −
V
*
)
P
*
/(
P
+
P
*
) . The characteristic pressure P
*
and the covolume V
*
are
T
and
P
independent. In polymer glass formers P
*
and V
*
have same values in the
α
(melt) and
β
(glass) domains. The characteristic temperatures
T
*
deduced from the Fan Structure of the Isobar (FSIb) above and below
T
g
are different. The characteristic temperature
T
*
(
α
) of the melt state is found near the Vogel temperature
T
0
for linear polymers and more than 100 K below
T
0
for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the
β
motions due to the pendent groups. The independence of
T
0
on
P
is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time
τ
of the
α
motions as a function of
P
and
T
is proposed. The fan structure of the isotherm log
τ versus P
is explained. It is shown that organic non-polymeric liquids (C
6
H
12
, C
6
H
14
, DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO
2
, Se, GeSe
4
, GeSe
2
, GeO
2
, As
2
O
3
and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation
P
*
=
B
0
/
γ
B
among the characteristic pressure
P
*
, the zero-pressure modulus
B
0
and the Slatter-Grüneisen anharmonicity parameter
γ
B
deduced from the VW-EOS, is observed in all the glass formers.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25403833</pmid><doi>10.1140/epje/i2014-14113-3</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04882796v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biophysics Chemical thermodynamics Chemistry Complex Fluids and Microfluidics Complex Systems Condensed Matter Exact sciences and technology General and physical chemistry Nanotechnology Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Surfaces and Interfaces Thin Films |
title | A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20modified%20van%20der%20Waals%20equation%20of%20state.%20Part%20I:%20Polymer%20and%20mineral%20glass%20formers&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Rault,%20Jacques&rft.date=2014-11&rft.volume=37&rft.issue=11&rft.spage=113&rft.epage=113&rft.pages=113-113&rft.artnum=113&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2014-14113-3&rft_dat=%3Cproquest_hal_p%3E1626166254%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626166254&rft_id=info:pmid/25403833&rfr_iscdi=true |