A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers

PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113
1. Verfasser: Rault, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 11
container_start_page 113
container_title The European physical journal. E, Soft matter and biological physics
container_volume 37
creator Rault, Jacques
description PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure characterized by the two parameters T * and V * ; b) the isotherms verify the principle of temperature-pressure superposition for P < P * . From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), ( V − V * ) = ( V 0 − V * ) P * /( P + P * ) . The characteristic pressure P * and the covolume V * are T and P independent. In polymer glass formers P * and V * have same values in the α (melt) and β (glass) domains. The characteristic temperatures T * deduced from the Fan Structure of the Isobar (FSIb) above and below T g are different. The characteristic temperature T * ( α ) of the melt state is found near the Vogel temperature T 0 for linear polymers and more than 100 K below T 0 for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the β motions due to the pendent groups. The independence of T 0 on P is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time τ of the α motions as a function of P and T is proposed. The fan structure of the isotherm log τ versus P is explained. It is shown that organic non-polymeric liquids (C 6 H 12 , C 6 H 14 , DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO 2 , Se, GeSe 4 , GeSe 2 , GeO 2 , As 2 O 3 and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation P * = B 0 / γ B among the characteristic pressure P * , the zero-pressure modulus B 0 and the Slatter-Grüneisen anharmonicity parameter γ B deduced from the VW-EOS, is observed in all the glass formers. Graphical abstract
doi_str_mv 10.1140/epje/i2014-14113-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04882796v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1626166254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0Eom3gD3BAviDBYVuPvbv2cosqaCtFogcQ3KzJ2i6Odu3U3o3Uf4_ThHDjNKOZb56t9wh5B-wSoGZXdruxV54zqCuoAUQlXpBz4B2vVNf8ennqazgjFzlvGCsoE6_JGW9KVUKcE72kc_A7mzIOdIzGO28N3WGgxib6E3HI1D7OOPkYaHQ0TzjZS3qPaaJ3n-l9HJ7GAmIwdPTBpqLyMGDO1MVUFvkNeeWKhn17rAvy4-uX79e31erbzd31clX15edTVQun0IEB6epGCcU7pYywjVp3hjW2R8dAKikR1uAUONPVvW2kBCckN0aKBfl00P2Ng94mP2J60hG9vl2u9H7GaqW47NodFPbjgd2m-DjbPOnR594OAwYb56yh5S20bTGpoPyA9inmnKw7aQPT-xD0PgT9HIJ-DkGLcvT-qD-vR2tOJ39dL8CHI4C5x8ElDL3P_7iOKQHFhgURBy6XVXiwSW_inELx8X_P_wGrI5-k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1626166254</pqid></control><display><type>article</type><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rault, Jacques</creator><creatorcontrib>Rault, Jacques</creatorcontrib><description>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure characterized by the two parameters T * and V * ; b) the isotherms verify the principle of temperature-pressure superposition for P &lt; P * . From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), ( V − V * ) = ( V 0 − V * ) P * /( P + P * ) . The characteristic pressure P * and the covolume V * are T and P independent. In polymer glass formers P * and V * have same values in the α (melt) and β (glass) domains. The characteristic temperatures T * deduced from the Fan Structure of the Isobar (FSIb) above and below T g are different. The characteristic temperature T * ( α ) of the melt state is found near the Vogel temperature T 0 for linear polymers and more than 100 K below T 0 for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the β motions due to the pendent groups. The independence of T 0 on P is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time τ of the α motions as a function of P and T is proposed. The fan structure of the isotherm log τ versus P is explained. It is shown that organic non-polymeric liquids (C 6 H 12 , C 6 H 14 , DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO 2 , Se, GeSe 4 , GeSe 2 , GeO 2 , As 2 O 3 and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation P * = B 0 / γ B among the characteristic pressure P * , the zero-pressure modulus B 0 and the Slatter-Grüneisen anharmonicity parameter γ B deduced from the VW-EOS, is observed in all the glass formers. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2014-14113-3</identifier><identifier>PMID: 25403833</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemical thermodynamics ; Chemistry ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed Matter ; Exact sciences and technology ; General and physical chemistry ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surfaces and Interfaces ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</citedby><cites>FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2014-14113-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2014-14113-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29083158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25403833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04882796$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rault, Jacques</creatorcontrib><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure characterized by the two parameters T * and V * ; b) the isotherms verify the principle of temperature-pressure superposition for P &lt; P * . From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), ( V − V * ) = ( V 0 − V * ) P * /( P + P * ) . The characteristic pressure P * and the covolume V * are T and P independent. In polymer glass formers P * and V * have same values in the α (melt) and β (glass) domains. The characteristic temperatures T * deduced from the Fan Structure of the Isobar (FSIb) above and below T g are different. The characteristic temperature T * ( α ) of the melt state is found near the Vogel temperature T 0 for linear polymers and more than 100 K below T 0 for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the β motions due to the pendent groups. The independence of T 0 on P is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time τ of the α motions as a function of P and T is proposed. The fan structure of the isotherm log τ versus P is explained. It is shown that organic non-polymeric liquids (C 6 H 12 , C 6 H 14 , DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO 2 , Se, GeSe 4 , GeSe 2 , GeO 2 , As 2 O 3 and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation P * = B 0 / γ B among the characteristic pressure P * , the zero-pressure modulus B 0 and the Slatter-Grüneisen anharmonicity parameter γ B deduced from the VW-EOS, is observed in all the glass formers. Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS0Eom3gD3BAviDBYVuPvbv2cosqaCtFogcQ3KzJ2i6Odu3U3o3Uf4_ThHDjNKOZb56t9wh5B-wSoGZXdruxV54zqCuoAUQlXpBz4B2vVNf8ennqazgjFzlvGCsoE6_JGW9KVUKcE72kc_A7mzIOdIzGO28N3WGgxib6E3HI1D7OOPkYaHQ0TzjZS3qPaaJ3n-l9HJ7GAmIwdPTBpqLyMGDO1MVUFvkNeeWKhn17rAvy4-uX79e31erbzd31clX15edTVQun0IEB6epGCcU7pYywjVp3hjW2R8dAKikR1uAUONPVvW2kBCckN0aKBfl00P2Ng94mP2J60hG9vl2u9H7GaqW47NodFPbjgd2m-DjbPOnR594OAwYb56yh5S20bTGpoPyA9inmnKw7aQPT-xD0PgT9HIJ-DkGLcvT-qD-vR2tOJ39dL8CHI4C5x8ElDL3P_7iOKQHFhgURBy6XVXiwSW_inELx8X_P_wGrI5-k</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Rault, Jacques</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201411</creationdate><title>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</title><author>Rault, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-43f8af1d17f458382988d3e58b9d05ecaf017877a1b1f81fd94ce5771f372dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rault, Jacques</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rault, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2014-11</date><risdate>2014</risdate><volume>37</volume><issue>11</issue><spage>113</spage><epage>113</epage><pages>113-113</pages><artnum>113</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>PVT data of glass formers (minerals and polymers) published in the literature are re-analyzed. All the polymer glass formers (PS, PVAc, PVME, PMMA, POMS, PBMA, PVC, PE, PP, PMPS, PMTS, PPG) present two main properties which have never been noted: a) the isobars P ( V ) have a fan structure characterized by the two parameters T * and V * ; b) the isotherms verify the principle of temperature-pressure superposition for P &lt; P * . From these properties we show that the Equation Of State (EOS) can be put on a modified van der Waals form (VW-EOS), ( V − V * ) = ( V 0 − V * ) P * /( P + P * ) . The characteristic pressure P * and the covolume V * are T and P independent. In polymer glass formers P * and V * have same values in the α (melt) and β (glass) domains. The characteristic temperatures T * deduced from the Fan Structure of the Isobar (FSIb) above and below T g are different. The characteristic temperature T * ( α ) of the melt state is found near the Vogel temperature T 0 for linear polymers and more than 100 K below T 0 for atactic polymers (with pendent groups). This difference in atactic polymers (and in some low molecular weight compounds) is explained by the importance of the β motions due to the pendent groups. The independence of T 0 on P is discussed. A modified VFT equation (analogous to the compensation law and Meyer-Neldel rule) giving the relaxation time τ of the α motions as a function of P and T is proposed. The fan structure of the isotherm log τ versus P is explained. It is shown that organic non-polymeric liquids (C 6 H 12 , C 6 H 14 , DHIQ, OTP, Glycerol, Salol, PDE, DGEBA), mineral glass (SiO 2 , Se, GeSe 4 , GeSe 2 , GeO 2 , As 2 O 3 and two metallic glasses (LaCe and CaAl alloys) verify this VW-EOS with similar accuracy. The relation P * = B 0 / γ B among the characteristic pressure P * , the zero-pressure modulus B 0 and the Slatter-Grüneisen anharmonicity parameter γ B deduced from the VW-EOS, is observed in all the glass formers. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25403833</pmid><doi>10.1140/epje/i2014-14113-3</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2014-11, Vol.37 (11), p.113-113, Article 113
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04882796v1
source SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biophysics
Chemical thermodynamics
Chemistry
Complex Fluids and Microfluidics
Complex Systems
Condensed Matter
Exact sciences and technology
General and physical chemistry
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Soft and Granular Matter
Surfaces and Interfaces
Thin Films
title A universal modified van der Waals equation of state. Part I: Polymer and mineral glass formers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20modified%20van%20der%20Waals%20equation%20of%20state.%20Part%20I:%20Polymer%20and%20mineral%20glass%20formers&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Rault,%20Jacques&rft.date=2014-11&rft.volume=37&rft.issue=11&rft.spage=113&rft.epage=113&rft.pages=113-113&rft.artnum=113&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2014-14113-3&rft_dat=%3Cproquest_hal_p%3E1626166254%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1626166254&rft_id=info:pmid/25403833&rfr_iscdi=true