Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase

The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2016-01, Vol.12 (2), p.574-580
Hauptverfasser: Meyer, C, Dozov, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 2
container_start_page 574
container_title Soft matter
container_volume 12
creator Meyer, C
Dozov, I
description The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on this NTB/SmA* analogy, we develop a coarse-grained elastic model for the NTB phase. Adopting one of the existing microscopic NTB elastic models, we calculate the coarse-grained elastic constants, coherence and penetration lengths in terms of a few Frank-like nematic elastic coefficients that can be measured in macroscopic experiments. The same coarse-grained approach, applied to different local elastic models, may provide an efficient experimental test of their validity. We show that the anisotropy of the NTB coarse-grained elasticity is opposite to that of the SmA*, leading probably to different configurations of some of the defects of the "layered" NTB structure. Moreover, we argue that the intrinsic chiral frustration of the NTB phase may be resolved by penetration of the twist field into the bulk through a network of screw dislocations of the NTB pseudo-layers, resulting in a twist-bend analogue of the twist grain boundary phase TGBA.
doi_str_mv 10.1039/c5sm02018b
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04882486v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811893911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-a3ea043da681a84afdfe524cb994092a3bd0276ae078b7434a2d1aa4c891d85c3</originalsourceid><addsrcrecordid>eNqNkU1LxEAMhgdR_Fi9-ANkjipUZzppOz3qoq6w4kEFbyWdSd1K21lnusr-e6ure1UIJCRPXhJexg6lOJNC5ecmCa2IhdTlBtuVGUCUatCb61o977C9EF6FUBpkus124jQRKgO5y56mzmDDbR165_vadZw68i9Ljp3lxqEPFL14rDuynBoMfW3qfsldxfsZ8f5j2ItKGtiOWhyGfD7DQPtsq8Im0MFPHrGn66vH8SSa3t_cji-mkYEc-ggVoQBlMdUSNWBlK0piMGWeg8hjVKUVcZYiiUyXGSjA2EpEMDqXVidGjdjJSneGTTH3dYt-WTisi8nFtPjqCdA6Bp2-y4E9XrFz794WFPqirYOhpsGO3CIUUqskjUEN8Tcqpc5VLv-hmiVy-CYdjBqx0xVqvAvBU7W-WIriy8hinDzcfRt5OcBHP7qLsiW7Rn-dU59QCJc2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751994610</pqid></control><display><type>article</type><title>Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Meyer, C ; Dozov, I</creator><creatorcontrib>Meyer, C ; Dozov, I</creatorcontrib><description>The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on this NTB/SmA* analogy, we develop a coarse-grained elastic model for the NTB phase. Adopting one of the existing microscopic NTB elastic models, we calculate the coarse-grained elastic constants, coherence and penetration lengths in terms of a few Frank-like nematic elastic coefficients that can be measured in macroscopic experiments. The same coarse-grained approach, applied to different local elastic models, may provide an efficient experimental test of their validity. We show that the anisotropy of the NTB coarse-grained elasticity is opposite to that of the SmA*, leading probably to different configurations of some of the defects of the "layered" NTB structure. Moreover, we argue that the intrinsic chiral frustration of the NTB phase may be resolved by penetration of the twist field into the bulk through a network of screw dislocations of the NTB pseudo-layers, resulting in a twist-bend analogue of the twist grain boundary phase TGBA.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm02018b</identifier><identifier>PMID: 26503741</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Coarsening ; Condensed Matter ; Distortion ; Elastic constants ; Elasticity ; Mathematical models ; Nematic ; Penetration ; Physics ; Shape memory alloys ; Soft Condensed Matter</subject><ispartof>Soft matter, 2016-01, Vol.12 (2), p.574-580</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-a3ea043da681a84afdfe524cb994092a3bd0276ae078b7434a2d1aa4c891d85c3</citedby><cites>FETCH-LOGICAL-c494t-a3ea043da681a84afdfe524cb994092a3bd0276ae078b7434a2d1aa4c891d85c3</cites><orcidid>0000-0001-8120-9217 ; 0000-0002-9088-7471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26503741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04882486$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, C</creatorcontrib><creatorcontrib>Dozov, I</creatorcontrib><title>Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on this NTB/SmA* analogy, we develop a coarse-grained elastic model for the NTB phase. Adopting one of the existing microscopic NTB elastic models, we calculate the coarse-grained elastic constants, coherence and penetration lengths in terms of a few Frank-like nematic elastic coefficients that can be measured in macroscopic experiments. The same coarse-grained approach, applied to different local elastic models, may provide an efficient experimental test of their validity. We show that the anisotropy of the NTB coarse-grained elasticity is opposite to that of the SmA*, leading probably to different configurations of some of the defects of the "layered" NTB structure. Moreover, we argue that the intrinsic chiral frustration of the NTB phase may be resolved by penetration of the twist field into the bulk through a network of screw dislocations of the NTB pseudo-layers, resulting in a twist-bend analogue of the twist grain boundary phase TGBA.</description><subject>Coarsening</subject><subject>Condensed Matter</subject><subject>Distortion</subject><subject>Elastic constants</subject><subject>Elasticity</subject><subject>Mathematical models</subject><subject>Nematic</subject><subject>Penetration</subject><subject>Physics</subject><subject>Shape memory alloys</subject><subject>Soft Condensed Matter</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxEAMhgdR_Fi9-ANkjipUZzppOz3qoq6w4kEFbyWdSd1K21lnusr-e6ure1UIJCRPXhJexg6lOJNC5ecmCa2IhdTlBtuVGUCUatCb61o977C9EF6FUBpkus124jQRKgO5y56mzmDDbR165_vadZw68i9Ljp3lxqEPFL14rDuynBoMfW3qfsldxfsZ8f5j2ItKGtiOWhyGfD7DQPtsq8Im0MFPHrGn66vH8SSa3t_cji-mkYEc-ggVoQBlMdUSNWBlK0piMGWeg8hjVKUVcZYiiUyXGSjA2EpEMDqXVidGjdjJSneGTTH3dYt-WTisi8nFtPjqCdA6Bp2-y4E9XrFz794WFPqirYOhpsGO3CIUUqskjUEN8Tcqpc5VLv-hmiVy-CYdjBqx0xVqvAvBU7W-WIriy8hinDzcfRt5OcBHP7qLsiW7Rn-dU59QCJc2</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Meyer, C</creator><creator>Dozov, I</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8120-9217</orcidid><orcidid>https://orcid.org/0000-0002-9088-7471</orcidid></search><sort><creationdate>20160101</creationdate><title>Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase</title><author>Meyer, C ; Dozov, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-a3ea043da681a84afdfe524cb994092a3bd0276ae078b7434a2d1aa4c891d85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coarsening</topic><topic>Condensed Matter</topic><topic>Distortion</topic><topic>Elastic constants</topic><topic>Elasticity</topic><topic>Mathematical models</topic><topic>Nematic</topic><topic>Penetration</topic><topic>Physics</topic><topic>Shape memory alloys</topic><topic>Soft Condensed Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, C</creatorcontrib><creatorcontrib>Dozov, I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, C</au><au>Dozov, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>574</spage><epage>580</epage><pages>574-580</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on this NTB/SmA* analogy, we develop a coarse-grained elastic model for the NTB phase. Adopting one of the existing microscopic NTB elastic models, we calculate the coarse-grained elastic constants, coherence and penetration lengths in terms of a few Frank-like nematic elastic coefficients that can be measured in macroscopic experiments. The same coarse-grained approach, applied to different local elastic models, may provide an efficient experimental test of their validity. We show that the anisotropy of the NTB coarse-grained elasticity is opposite to that of the SmA*, leading probably to different configurations of some of the defects of the "layered" NTB structure. Moreover, we argue that the intrinsic chiral frustration of the NTB phase may be resolved by penetration of the twist field into the bulk through a network of screw dislocations of the NTB pseudo-layers, resulting in a twist-bend analogue of the twist grain boundary phase TGBA.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>26503741</pmid><doi>10.1039/c5sm02018b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8120-9217</orcidid><orcidid>https://orcid.org/0000-0002-9088-7471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-01, Vol.12 (2), p.574-580
issn 1744-683X
1744-6848
language eng
recordid cdi_hal_primary_oai_HAL_hal_04882486v1
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Coarsening
Condensed Matter
Distortion
Elastic constants
Elasticity
Mathematical models
Nematic
Penetration
Physics
Shape memory alloys
Soft Condensed Matter
title Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20distortion%20energy%20and%20coarse-grained%20elasticity%20of%20the%20twist-bend%20nematic%20phase&rft.jtitle=Soft%20matter&rft.au=Meyer,%20C&rft.date=2016-01-01&rft.volume=12&rft.issue=2&rft.spage=574&rft.epage=580&rft.pages=574-580&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm02018b&rft_dat=%3Cproquest_hal_p%3E1811893911%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751994610&rft_id=info:pmid/26503741&rfr_iscdi=true