Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA

Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and planetary science letters 2023-01, Vol.602, p.117913, Article 117913
Hauptverfasser: Olson, Kristian J., Guillerm, Emmanuel, Peaple, Mark D., Lowenstein, Tim K., Gardien, Véronique, Caupin, Frédéric, Feakins, Sarah J., Tierney, Jessica E., Stroup, Justin, Lund, Steve, McGee, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117913
container_title Earth and planetary science letters
container_volume 602
creator Olson, Kristian J.
Guillerm, Emmanuel
Peaple, Mark D.
Lowenstein, Tim K.
Gardien, Véronique
Caupin, Frédéric
Feakins, Sarah J.
Tierney, Jessica E.
Stroup, Justin
Lund, Steve
McGee, David
description Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing dry intervals of the late Pleistocene/Holocene (45–0 ka) core record of Searles Lake, California. Temperatures during muddy wetter intervals are available from branched glycerol dialkyl glycerol tetraethers (brGDGTs). Halite from the sediment-water interface records lake bottom temperatures during dry, high salinity periods. Analysis of modern saline lakes of various chemistries, depths, climate zones, and mixing regimes shows that: 1) average bottom water temperature is approximately equal to mean annual air temperature, and 2) annual range of bottom water temperature is inversely proportional to lake depth. Brillouin temperatures for eight halite intervals 30.6 ka to 8.5 ka range from 11.8 ± 3.6 to 22.4 ± 3.2°C. Bottom water temperature variability indicates paleolake depths of ∼10 m during halite precipitation. Temperatures from brGDGTs for mud intervals 44.7 ka to 3.6 ka range from 13.4 ± 2.8 to 23.9 ± 3.0°C. Comparisons of Brillouin temperatures with predicted equilibrium temperatures of salt crystallization shed light on seasonal processes of evaporite deposition and diagenesis. The multiproxy temperature record of Searles Lake agrees with other regional records at glacial/interglacial timescales but displays a wider degree of millennial-scale variability, with temperatures during the last glacial ranging from 8.3°C below modern mean annual temperatures to 3.8°C above. •Brillouin thermometry yields brine temperatures during periods of salt formation.•Hydroclimate variability can be reconstructed with paired Brillouin/brGDGT proxies.•Annual bottom water temperatures of non-tropical saline lakes are a proxy for MAAT.•Searles lake was ∼10 m deep during halite precipitation between 45 ka to 2.8 ka.•Last glacial temperatures range from 8.3°C lower than modern to 3.8°C higher.
doi_str_mv 10.1016/j.epsl.2022.117913
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04880654v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X22005490</els_id><sourcerecordid>S0012821X22005490</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-b754c3f6bee2c3467cc1101f8cfb38415bf6c68b1b9b0808316c20ae1d2989dc3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFOuglsz2e02C15qUSssKGiht5DNTjA13dQkFvz3blnx6GmYmfeGeR8hl8AmwKC82UxwF92EM84nALMK8iMyglxMMwb5-piMGAOeCQ7rU3IW44YxVk7LakQ-57uds1ol6zvqDb0L1jn_ZTua3jFs_RZT-KbJU6cSxkRfHNqYvMYOqepauvRuaN6VswmpCX5LX1EFh5HW6gOv6aLfGB86q67p6nV-Tk6MchEvfuuYrB7u3xbLrH5-fFrM60wVDFLWzKaFzk3ZIHKdF-VMa-ijGqFNk4sCpo0pdSkaaKqGCSZyKDVnCqHllahanY_J1XC3_0zugt2q8C29snI5r-VhxgohegrFHnotH7Q6-BgDmj8DMHkALDfyAFgeAMsBcG-6HUzYp9hbDDJqi53G1gbUSbbe_mf_AaM4hNs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA</title><source>Elsevier ScienceDirect Journals</source><creator>Olson, Kristian J. ; Guillerm, Emmanuel ; Peaple, Mark D. ; Lowenstein, Tim K. ; Gardien, Véronique ; Caupin, Frédéric ; Feakins, Sarah J. ; Tierney, Jessica E. ; Stroup, Justin ; Lund, Steve ; McGee, David</creator><creatorcontrib>Olson, Kristian J. ; Guillerm, Emmanuel ; Peaple, Mark D. ; Lowenstein, Tim K. ; Gardien, Véronique ; Caupin, Frédéric ; Feakins, Sarah J. ; Tierney, Jessica E. ; Stroup, Justin ; Lund, Steve ; McGee, David</creatorcontrib><description>Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing dry intervals of the late Pleistocene/Holocene (45–0 ka) core record of Searles Lake, California. Temperatures during muddy wetter intervals are available from branched glycerol dialkyl glycerol tetraethers (brGDGTs). Halite from the sediment-water interface records lake bottom temperatures during dry, high salinity periods. Analysis of modern saline lakes of various chemistries, depths, climate zones, and mixing regimes shows that: 1) average bottom water temperature is approximately equal to mean annual air temperature, and 2) annual range of bottom water temperature is inversely proportional to lake depth. Brillouin temperatures for eight halite intervals 30.6 ka to 8.5 ka range from 11.8 ± 3.6 to 22.4 ± 3.2°C. Bottom water temperature variability indicates paleolake depths of ∼10 m during halite precipitation. Temperatures from brGDGTs for mud intervals 44.7 ka to 3.6 ka range from 13.4 ± 2.8 to 23.9 ± 3.0°C. Comparisons of Brillouin temperatures with predicted equilibrium temperatures of salt crystallization shed light on seasonal processes of evaporite deposition and diagenesis. The multiproxy temperature record of Searles Lake agrees with other regional records at glacial/interglacial timescales but displays a wider degree of millennial-scale variability, with temperatures during the last glacial ranging from 8.3°C below modern mean annual temperatures to 3.8°C above. •Brillouin thermometry yields brine temperatures during periods of salt formation.•Hydroclimate variability can be reconstructed with paired Brillouin/brGDGT proxies.•Annual bottom water temperatures of non-tropical saline lakes are a proxy for MAAT.•Searles lake was ∼10 m deep during halite precipitation between 45 ka to 2.8 ka.•Last glacial temperatures range from 8.3°C lower than modern to 3.8°C higher.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2022.117913</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Brillouin thermometry ; Earth Sciences ; evaporites ; fluid inclusions ; GDGTs ; Sciences of the Universe ; Searles Lake</subject><ispartof>Earth and planetary science letters, 2023-01, Vol.602, p.117913, Article 117913</ispartof><rights>2022 Elsevier B.V.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-b754c3f6bee2c3467cc1101f8cfb38415bf6c68b1b9b0808316c20ae1d2989dc3</citedby><cites>FETCH-LOGICAL-a401t-b754c3f6bee2c3467cc1101f8cfb38415bf6c68b1b9b0808316c20ae1d2989dc3</cites><orcidid>0000-0002-2725-9229 ; 0000-0002-9080-9289 ; 0000-0003-4745-1688 ; 0000-0002-1215-5478 ; 0000-0001-9707-2980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsl.2022.117913$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04880654$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Olson, Kristian J.</creatorcontrib><creatorcontrib>Guillerm, Emmanuel</creatorcontrib><creatorcontrib>Peaple, Mark D.</creatorcontrib><creatorcontrib>Lowenstein, Tim K.</creatorcontrib><creatorcontrib>Gardien, Véronique</creatorcontrib><creatorcontrib>Caupin, Frédéric</creatorcontrib><creatorcontrib>Feakins, Sarah J.</creatorcontrib><creatorcontrib>Tierney, Jessica E.</creatorcontrib><creatorcontrib>Stroup, Justin</creatorcontrib><creatorcontrib>Lund, Steve</creatorcontrib><creatorcontrib>McGee, David</creatorcontrib><title>Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA</title><title>Earth and planetary science letters</title><description>Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing dry intervals of the late Pleistocene/Holocene (45–0 ka) core record of Searles Lake, California. Temperatures during muddy wetter intervals are available from branched glycerol dialkyl glycerol tetraethers (brGDGTs). Halite from the sediment-water interface records lake bottom temperatures during dry, high salinity periods. Analysis of modern saline lakes of various chemistries, depths, climate zones, and mixing regimes shows that: 1) average bottom water temperature is approximately equal to mean annual air temperature, and 2) annual range of bottom water temperature is inversely proportional to lake depth. Brillouin temperatures for eight halite intervals 30.6 ka to 8.5 ka range from 11.8 ± 3.6 to 22.4 ± 3.2°C. Bottom water temperature variability indicates paleolake depths of ∼10 m during halite precipitation. Temperatures from brGDGTs for mud intervals 44.7 ka to 3.6 ka range from 13.4 ± 2.8 to 23.9 ± 3.0°C. Comparisons of Brillouin temperatures with predicted equilibrium temperatures of salt crystallization shed light on seasonal processes of evaporite deposition and diagenesis. The multiproxy temperature record of Searles Lake agrees with other regional records at glacial/interglacial timescales but displays a wider degree of millennial-scale variability, with temperatures during the last glacial ranging from 8.3°C below modern mean annual temperatures to 3.8°C above. •Brillouin thermometry yields brine temperatures during periods of salt formation.•Hydroclimate variability can be reconstructed with paired Brillouin/brGDGT proxies.•Annual bottom water temperatures of non-tropical saline lakes are a proxy for MAAT.•Searles lake was ∼10 m deep during halite precipitation between 45 ka to 2.8 ka.•Last glacial temperatures range from 8.3°C lower than modern to 3.8°C higher.</description><subject>Brillouin thermometry</subject><subject>Earth Sciences</subject><subject>evaporites</subject><subject>fluid inclusions</subject><subject>GDGTs</subject><subject>Sciences of the Universe</subject><subject>Searles Lake</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wFOuglsz2e02C15qUSssKGiht5DNTjA13dQkFvz3blnx6GmYmfeGeR8hl8AmwKC82UxwF92EM84nALMK8iMyglxMMwb5-piMGAOeCQ7rU3IW44YxVk7LakQ-57uds1ol6zvqDb0L1jn_ZTua3jFs_RZT-KbJU6cSxkRfHNqYvMYOqepauvRuaN6VswmpCX5LX1EFh5HW6gOv6aLfGB86q67p6nV-Tk6MchEvfuuYrB7u3xbLrH5-fFrM60wVDFLWzKaFzk3ZIHKdF-VMa-ijGqFNk4sCpo0pdSkaaKqGCSZyKDVnCqHllahanY_J1XC3_0zugt2q8C29snI5r-VhxgohegrFHnotH7Q6-BgDmj8DMHkALDfyAFgeAMsBcG-6HUzYp9hbDDJqi53G1gbUSbbe_mf_AaM4hNs</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Olson, Kristian J.</creator><creator>Guillerm, Emmanuel</creator><creator>Peaple, Mark D.</creator><creator>Lowenstein, Tim K.</creator><creator>Gardien, Véronique</creator><creator>Caupin, Frédéric</creator><creator>Feakins, Sarah J.</creator><creator>Tierney, Jessica E.</creator><creator>Stroup, Justin</creator><creator>Lund, Steve</creator><creator>McGee, David</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2725-9229</orcidid><orcidid>https://orcid.org/0000-0002-9080-9289</orcidid><orcidid>https://orcid.org/0000-0003-4745-1688</orcidid><orcidid>https://orcid.org/0000-0002-1215-5478</orcidid><orcidid>https://orcid.org/0000-0001-9707-2980</orcidid></search><sort><creationdate>20230115</creationdate><title>Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA</title><author>Olson, Kristian J. ; Guillerm, Emmanuel ; Peaple, Mark D. ; Lowenstein, Tim K. ; Gardien, Véronique ; Caupin, Frédéric ; Feakins, Sarah J. ; Tierney, Jessica E. ; Stroup, Justin ; Lund, Steve ; McGee, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-b754c3f6bee2c3467cc1101f8cfb38415bf6c68b1b9b0808316c20ae1d2989dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brillouin thermometry</topic><topic>Earth Sciences</topic><topic>evaporites</topic><topic>fluid inclusions</topic><topic>GDGTs</topic><topic>Sciences of the Universe</topic><topic>Searles Lake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Kristian J.</creatorcontrib><creatorcontrib>Guillerm, Emmanuel</creatorcontrib><creatorcontrib>Peaple, Mark D.</creatorcontrib><creatorcontrib>Lowenstein, Tim K.</creatorcontrib><creatorcontrib>Gardien, Véronique</creatorcontrib><creatorcontrib>Caupin, Frédéric</creatorcontrib><creatorcontrib>Feakins, Sarah J.</creatorcontrib><creatorcontrib>Tierney, Jessica E.</creatorcontrib><creatorcontrib>Stroup, Justin</creatorcontrib><creatorcontrib>Lund, Steve</creatorcontrib><creatorcontrib>McGee, David</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Kristian J.</au><au>Guillerm, Emmanuel</au><au>Peaple, Mark D.</au><au>Lowenstein, Tim K.</au><au>Gardien, Véronique</au><au>Caupin, Frédéric</au><au>Feakins, Sarah J.</au><au>Tierney, Jessica E.</au><au>Stroup, Justin</au><au>Lund, Steve</au><au>McGee, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA</atitle><jtitle>Earth and planetary science letters</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>602</volume><spage>117913</spage><pages>117913-</pages><artnum>117913</artnum><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>Paleoclimate records from lakes of the southwestern USA have been limited by a lack of independent paleothermometers, resulting in conflicting characterizations of millennial-scale variability in temperature and moisture. Here a novel method called Brillouin thermometry is applied to halite-bearing dry intervals of the late Pleistocene/Holocene (45–0 ka) core record of Searles Lake, California. Temperatures during muddy wetter intervals are available from branched glycerol dialkyl glycerol tetraethers (brGDGTs). Halite from the sediment-water interface records lake bottom temperatures during dry, high salinity periods. Analysis of modern saline lakes of various chemistries, depths, climate zones, and mixing regimes shows that: 1) average bottom water temperature is approximately equal to mean annual air temperature, and 2) annual range of bottom water temperature is inversely proportional to lake depth. Brillouin temperatures for eight halite intervals 30.6 ka to 8.5 ka range from 11.8 ± 3.6 to 22.4 ± 3.2°C. Bottom water temperature variability indicates paleolake depths of ∼10 m during halite precipitation. Temperatures from brGDGTs for mud intervals 44.7 ka to 3.6 ka range from 13.4 ± 2.8 to 23.9 ± 3.0°C. Comparisons of Brillouin temperatures with predicted equilibrium temperatures of salt crystallization shed light on seasonal processes of evaporite deposition and diagenesis. The multiproxy temperature record of Searles Lake agrees with other regional records at glacial/interglacial timescales but displays a wider degree of millennial-scale variability, with temperatures during the last glacial ranging from 8.3°C below modern mean annual temperatures to 3.8°C above. •Brillouin thermometry yields brine temperatures during periods of salt formation.•Hydroclimate variability can be reconstructed with paired Brillouin/brGDGT proxies.•Annual bottom water temperatures of non-tropical saline lakes are a proxy for MAAT.•Searles lake was ∼10 m deep during halite precipitation between 45 ka to 2.8 ka.•Last glacial temperatures range from 8.3°C lower than modern to 3.8°C higher.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2022.117913</doi><orcidid>https://orcid.org/0000-0002-2725-9229</orcidid><orcidid>https://orcid.org/0000-0002-9080-9289</orcidid><orcidid>https://orcid.org/0000-0003-4745-1688</orcidid><orcidid>https://orcid.org/0000-0002-1215-5478</orcidid><orcidid>https://orcid.org/0000-0001-9707-2980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2023-01, Vol.602, p.117913, Article 117913
issn 0012-821X
1385-013X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04880654v1
source Elsevier ScienceDirect Journals
subjects Brillouin thermometry
Earth Sciences
evaporites
fluid inclusions
GDGTs
Sciences of the Universe
Searles Lake
title Application of Brillouin thermometry to latest Pleistocene and Holocene halite from Searles Lake, California, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Brillouin%20thermometry%20to%20latest%20Pleistocene%20and%20Holocene%20halite%20from%20Searles%20Lake,%20California,%20USA&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Olson,%20Kristian%20J.&rft.date=2023-01-15&rft.volume=602&rft.spage=117913&rft.pages=117913-&rft.artnum=117913&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2022.117913&rft_dat=%3Celsevier_hal_p%3ES0012821X22005490%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0012821X22005490&rfr_iscdi=true