Freeness of type B and conditional freeness for random matrices
The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic free...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2024, Vol.73 (3), p.1207-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1252 |
---|---|
container_issue | 3 |
container_start_page | 1207 |
container_title | Indiana University mathematics journal |
container_volume | 73 |
creator | Cébron, Guillaume Dahlqvist, Antoine Gabriel, Franck |
description | The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles. |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04871222v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04871222v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04871222v13</originalsourceid><addsrcrecordid>eNqVirsKwjAUQDMoWB__cFeHQh6W1klULB0c3cOlTTCSR0mC0L9XQT_A6cA5Z0YKSjkvecWaBVmm9KBU1JXYF-TQRqW8SgmChjyNCk6AfoA--MFkEzxa0L9FhwjxXYMDhzmaXqU1mWu0SW2-XJFte7mdu_KOVo7ROIyTDGhkd7zKj6O7pmac8ycT_7wvKYM7vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Freeness of type B and conditional freeness for random matrices</title><source>Alma/SFX Local Collection</source><creator>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</creator><creatorcontrib>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</creatorcontrib><description>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</description><identifier>ISSN: 0022-2518</identifier><language>eng</language><publisher>Indiana University Mathematics Journal</publisher><subject>Mathematics ; Probability</subject><ispartof>Indiana University mathematics journal, 2024, Vol.73 (3), p.1207-1252</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8095-7843 ; 0000-0002-8095-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04871222$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cébron, Guillaume</creatorcontrib><creatorcontrib>Dahlqvist, Antoine</creatorcontrib><creatorcontrib>Gabriel, Franck</creatorcontrib><title>Freeness of type B and conditional freeness for random matrices</title><title>Indiana University mathematics journal</title><description>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</description><subject>Mathematics</subject><subject>Probability</subject><issn>0022-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVirsKwjAUQDMoWB__cFeHQh6W1klULB0c3cOlTTCSR0mC0L9XQT_A6cA5Z0YKSjkvecWaBVmm9KBU1JXYF-TQRqW8SgmChjyNCk6AfoA--MFkEzxa0L9FhwjxXYMDhzmaXqU1mWu0SW2-XJFte7mdu_KOVo7ROIyTDGhkd7zKj6O7pmac8ycT_7wvKYM7vw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cébron, Guillaume</creator><creator>Dahlqvist, Antoine</creator><creator>Gabriel, Franck</creator><general>Indiana University Mathematics Journal</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid></search><sort><creationdate>2024</creationdate><title>Freeness of type B and conditional freeness for random matrices</title><author>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04871222v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cébron, Guillaume</creatorcontrib><creatorcontrib>Dahlqvist, Antoine</creatorcontrib><creatorcontrib>Gabriel, Franck</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cébron, Guillaume</au><au>Dahlqvist, Antoine</au><au>Gabriel, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeness of type B and conditional freeness for random matrices</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>3</issue><spage>1207</spage><epage>1252</epage><pages>1207-1252</pages><issn>0022-2518</issn><abstract>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</abstract><pub>Indiana University Mathematics Journal</pub><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2518 |
ispartof | Indiana University mathematics journal, 2024, Vol.73 (3), p.1207-1252 |
issn | 0022-2518 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04871222v1 |
source | Alma/SFX Local Collection |
subjects | Mathematics Probability |
title | Freeness of type B and conditional freeness for random matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeness%20of%20type%20B%20and%20conditional%20freeness%20for%20random%20matrices&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=C%C3%A9bron,%20Guillaume&rft.date=2024&rft.volume=73&rft.issue=3&rft.spage=1207&rft.epage=1252&rft.pages=1207-1252&rft.issn=0022-2518&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_04871222v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |