Freeness of type B and conditional freeness for random matrices

The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2024, Vol.73 (3), p.1207-1252
Hauptverfasser: Cébron, Guillaume, Dahlqvist, Antoine, Gabriel, Franck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1252
container_issue 3
container_start_page 1207
container_title Indiana University mathematics journal
container_volume 73
creator Cébron, Guillaume
Dahlqvist, Antoine
Gabriel, Franck
description The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04871222v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04871222v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04871222v13</originalsourceid><addsrcrecordid>eNqVirsKwjAUQDMoWB__cFeHQh6W1klULB0c3cOlTTCSR0mC0L9XQT_A6cA5Z0YKSjkvecWaBVmm9KBU1JXYF-TQRqW8SgmChjyNCk6AfoA--MFkEzxa0L9FhwjxXYMDhzmaXqU1mWu0SW2-XJFte7mdu_KOVo7ROIyTDGhkd7zKj6O7pmac8ycT_7wvKYM7vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Freeness of type B and conditional freeness for random matrices</title><source>Alma/SFX Local Collection</source><creator>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</creator><creatorcontrib>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</creatorcontrib><description>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</description><identifier>ISSN: 0022-2518</identifier><language>eng</language><publisher>Indiana University Mathematics Journal</publisher><subject>Mathematics ; Probability</subject><ispartof>Indiana University mathematics journal, 2024, Vol.73 (3), p.1207-1252</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8095-7843 ; 0000-0002-8095-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04871222$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cébron, Guillaume</creatorcontrib><creatorcontrib>Dahlqvist, Antoine</creatorcontrib><creatorcontrib>Gabriel, Franck</creatorcontrib><title>Freeness of type B and conditional freeness for random matrices</title><title>Indiana University mathematics journal</title><description>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</description><subject>Mathematics</subject><subject>Probability</subject><issn>0022-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVirsKwjAUQDMoWB__cFeHQh6W1klULB0c3cOlTTCSR0mC0L9XQT_A6cA5Z0YKSjkvecWaBVmm9KBU1JXYF-TQRqW8SgmChjyNCk6AfoA--MFkEzxa0L9FhwjxXYMDhzmaXqU1mWu0SW2-XJFte7mdu_KOVo7ROIyTDGhkd7zKj6O7pmac8ycT_7wvKYM7vw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cébron, Guillaume</creator><creator>Dahlqvist, Antoine</creator><creator>Gabriel, Franck</creator><general>Indiana University Mathematics Journal</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid></search><sort><creationdate>2024</creationdate><title>Freeness of type B and conditional freeness for random matrices</title><author>Cébron, Guillaume ; Dahlqvist, Antoine ; Gabriel, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04871222v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cébron, Guillaume</creatorcontrib><creatorcontrib>Dahlqvist, Antoine</creatorcontrib><creatorcontrib>Gabriel, Franck</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Indiana University mathematics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cébron, Guillaume</au><au>Dahlqvist, Antoine</au><au>Gabriel, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freeness of type B and conditional freeness for random matrices</atitle><jtitle>Indiana University mathematics journal</jtitle><date>2024</date><risdate>2024</risdate><volume>73</volume><issue>3</issue><spage>1207</spage><epage>1252</epage><pages>1207-1252</pages><issn>0022-2518</issn><abstract>The asymptotic freeness of independent unitarily invariant N×N random matrices holds in expectation up to O(N−2). An already known consequence is the infinitesimal freeness in expectation. We put in evidence another consequence for unitarily invariant random matrices: the almost sure asymptotic freeness of type B. As byproducts, we recover the asymptotic cyclic monotonicity, and we get the asymptotic conditional freeness. In particular, the eigenvector empirical spectral distribution of the sum of two randomly rotated random matrices converges towards the conditionally free convolution. We also show new connections between infinitesimal freeness, freeness of type B, conditional freeness, cyclic monotonicity and monotone independence. Finally, we show rigorously that the BBP phase transition for an additive rank-one perturbation of a GUE matrix is a consequence of the asymptotic conditional freeness, and the arguments extend to the study of the outlier eigenvalues of other unitarily invariant ensembles.</abstract><pub>Indiana University Mathematics Journal</pub><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid><orcidid>https://orcid.org/0000-0002-8095-7843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2518
ispartof Indiana University mathematics journal, 2024, Vol.73 (3), p.1207-1252
issn 0022-2518
language eng
recordid cdi_hal_primary_oai_HAL_hal_04871222v1
source Alma/SFX Local Collection
subjects Mathematics
Probability
title Freeness of type B and conditional freeness for random matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freeness%20of%20type%20B%20and%20conditional%20freeness%20for%20random%20matrices&rft.jtitle=Indiana%20University%20mathematics%20journal&rft.au=C%C3%A9bron,%20Guillaume&rft.date=2024&rft.volume=73&rft.issue=3&rft.spage=1207&rft.epage=1252&rft.pages=1207-1252&rft.issn=0022-2518&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_04871222v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true