Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms
In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectr...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-12, Vol.40 (50), p.26616-26625 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26625 |
---|---|
container_issue | 50 |
container_start_page | 26616 |
container_title | Langmuir |
container_volume | 40 |
creator | Omar, Choayb Freisa, Martina Man, Hiu Mun Kechkeche, Djamila Dinh, Thi Hong Nhung Haghiri-Gosnet, Anne-Marie Le Potier, Isabelle Gamby, Jean |
description | In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)6 3–/Fe(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands. |
doi_str_mv | 10.1021/acs.langmuir.4c03566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04856155v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140928477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</originalsourceid><addsrcrecordid>eNp9kc1q3DAURk1paaZp36AULZOFp_q3vQxDmgQmTBfTtZHl67GCLLmSHTJ5o75lNJlJlgXBBXG-T1ydLPtO8JJgSn4qHZdWud0wm7DkGjMh5YdsQQTFuShp8TFb4IKzvOCSnWVfYnzAGFeMV5-zM1ZJWmJBFtm_zTiZwTwbt0PbYOIFzVcqNP5pD1O_t5dj7-PYGwdIuRbdQ9BqnHwPT8p5i1beaXBTUJPxLqLOB7TtjbdqghZtrNl5N2sLfjItoLth8I2x5vmVRun8TqBx84CuLegp-BYiMg7dGx18Z2fTGv3KpN4hfs0-dcpG-Haa59mfX9fb1W2-3tzcra7WuaKSTHmhdccYNEpSLJWmsqlKxktcEgm4o1AA0VJUnGHNpa6kblOAlEKJNDgodp5dHnt7ZesxmEGFfe2VqW-v1vXhDvNSSCLEI0nsxZEdg_87Q5zqwUQNNnkBP8eaEY4rWvKiSCg_omm3GAN0790E1wehdRJavwmtT0JT7MfphbkZoH0PvRlMAD4Ch_iDn4NLn_P_zhfUSbUf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140928477</pqid></control><display><type>article</type><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><source>MEDLINE</source><source>ACS Publications</source><creator>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</creator><creatorcontrib>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</creatorcontrib><description>In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)6 3–/Fe(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c03566</identifier><identifier>PMID: 39628051</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques - methods ; Chemical Sciences ; Electrodes ; Engineering Sciences ; Hexanols - chemistry ; Immobilized Nucleic Acids - chemistry ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Oligonucleotides - chemistry ; Phosphines - chemistry ; Platinum - chemistry ; Sulfhydryl Compounds - chemistry</subject><ispartof>Langmuir, 2024-12, Vol.40 (50), p.26616-26625</ispartof><rights>2024 American Chemical Society</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</cites><orcidid>0000-0001-7613-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c03566$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c03566$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39628051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04856155$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Omar, Choayb</creatorcontrib><creatorcontrib>Freisa, Martina</creatorcontrib><creatorcontrib>Man, Hiu Mun</creatorcontrib><creatorcontrib>Kechkeche, Djamila</creatorcontrib><creatorcontrib>Dinh, Thi Hong Nhung</creatorcontrib><creatorcontrib>Haghiri-Gosnet, Anne-Marie</creatorcontrib><creatorcontrib>Le Potier, Isabelle</creatorcontrib><creatorcontrib>Gamby, Jean</creatorcontrib><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)6 3–/Fe(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</description><subject>Biosensing Techniques - methods</subject><subject>Chemical Sciences</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>Hexanols - chemistry</subject><subject>Immobilized Nucleic Acids - chemistry</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Oligonucleotides - chemistry</subject><subject>Phosphines - chemistry</subject><subject>Platinum - chemistry</subject><subject>Sulfhydryl Compounds - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAURk1paaZp36AULZOFp_q3vQxDmgQmTBfTtZHl67GCLLmSHTJ5o75lNJlJlgXBBXG-T1ydLPtO8JJgSn4qHZdWud0wm7DkGjMh5YdsQQTFuShp8TFb4IKzvOCSnWVfYnzAGFeMV5-zM1ZJWmJBFtm_zTiZwTwbt0PbYOIFzVcqNP5pD1O_t5dj7-PYGwdIuRbdQ9BqnHwPT8p5i1beaXBTUJPxLqLOB7TtjbdqghZtrNl5N2sLfjItoLth8I2x5vmVRun8TqBx84CuLegp-BYiMg7dGx18Z2fTGv3KpN4hfs0-dcpG-Haa59mfX9fb1W2-3tzcra7WuaKSTHmhdccYNEpSLJWmsqlKxktcEgm4o1AA0VJUnGHNpa6kblOAlEKJNDgodp5dHnt7ZesxmEGFfe2VqW-v1vXhDvNSSCLEI0nsxZEdg_87Q5zqwUQNNnkBP8eaEY4rWvKiSCg_omm3GAN0790E1wehdRJavwmtT0JT7MfphbkZoH0PvRlMAD4Ch_iDn4NLn_P_zhfUSbUf</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Omar, Choayb</creator><creator>Freisa, Martina</creator><creator>Man, Hiu Mun</creator><creator>Kechkeche, Djamila</creator><creator>Dinh, Thi Hong Nhung</creator><creator>Haghiri-Gosnet, Anne-Marie</creator><creator>Le Potier, Isabelle</creator><creator>Gamby, Jean</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7613-8872</orcidid></search><sort><creationdate>20241217</creationdate><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><author>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biosensing Techniques - methods</topic><topic>Chemical Sciences</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>Hexanols - chemistry</topic><topic>Immobilized Nucleic Acids - chemistry</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Oligonucleotides - chemistry</topic><topic>Phosphines - chemistry</topic><topic>Platinum - chemistry</topic><topic>Sulfhydryl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omar, Choayb</creatorcontrib><creatorcontrib>Freisa, Martina</creatorcontrib><creatorcontrib>Man, Hiu Mun</creatorcontrib><creatorcontrib>Kechkeche, Djamila</creatorcontrib><creatorcontrib>Dinh, Thi Hong Nhung</creatorcontrib><creatorcontrib>Haghiri-Gosnet, Anne-Marie</creatorcontrib><creatorcontrib>Le Potier, Isabelle</creatorcontrib><creatorcontrib>Gamby, Jean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omar, Choayb</au><au>Freisa, Martina</au><au>Man, Hiu Mun</au><au>Kechkeche, Djamila</au><au>Dinh, Thi Hong Nhung</au><au>Haghiri-Gosnet, Anne-Marie</au><au>Le Potier, Isabelle</au><au>Gamby, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>40</volume><issue>50</issue><spage>26616</spage><epage>26625</epage><pages>26616-26625</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>In this study, we propose a strategy to explore the impact of the proportion of tris(2-carboxyethyl)phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe(CN)6 3–/Fe(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39628051</pmid><doi>10.1021/acs.langmuir.4c03566</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7613-8872</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2024-12, Vol.40 (50), p.26616-26625 |
issn | 0743-7463 1520-5827 1520-5827 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04856155v1 |
source | MEDLINE; ACS Publications |
subjects | Biosensing Techniques - methods Chemical Sciences Electrodes Engineering Sciences Hexanols - chemistry Immobilized Nucleic Acids - chemistry Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Oligonucleotides - chemistry Phosphines - chemistry Platinum - chemistry Sulfhydryl Compounds - chemistry |
title | Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Tris(2-Carboxyethyl)phosphine%20and%20Mercaptohexanol%20Concentrations%20for%20Thiolated%20Oligonucleotide%20Immobilization%20on%20Platinum%20Electrodes%20in%20Microfluidic%20Platforms&rft.jtitle=Langmuir&rft.au=Omar,%20Choayb&rft.date=2024-12-17&rft.volume=40&rft.issue=50&rft.spage=26616&rft.epage=26625&rft.pages=26616-26625&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c03566&rft_dat=%3Cproquest_hal_p%3E3140928477%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140928477&rft_id=info:pmid/39628051&rfr_iscdi=true |