Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms

In this study, we propose a strategy to explore the impact of the proportion of tris­(2-carboxyethyl)­phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2024-12, Vol.40 (50), p.26616-26625
Hauptverfasser: Omar, Choayb, Freisa, Martina, Man, Hiu Mun, Kechkeche, Djamila, Dinh, Thi Hong Nhung, Haghiri-Gosnet, Anne-Marie, Le Potier, Isabelle, Gamby, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26625
container_issue 50
container_start_page 26616
container_title Langmuir
container_volume 40
creator Omar, Choayb
Freisa, Martina
Man, Hiu Mun
Kechkeche, Djamila
Dinh, Thi Hong Nhung
Haghiri-Gosnet, Anne-Marie
Le Potier, Isabelle
Gamby, Jean
description In this study, we propose a strategy to explore the impact of the proportion of tris­(2-carboxyethyl)­phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe­(CN)6 3–/Fe­(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.
doi_str_mv 10.1021/acs.langmuir.4c03566
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04856155v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140928477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</originalsourceid><addsrcrecordid>eNp9kc1q3DAURk1paaZp36AULZOFp_q3vQxDmgQmTBfTtZHl67GCLLmSHTJ5o75lNJlJlgXBBXG-T1ydLPtO8JJgSn4qHZdWud0wm7DkGjMh5YdsQQTFuShp8TFb4IKzvOCSnWVfYnzAGFeMV5-zM1ZJWmJBFtm_zTiZwTwbt0PbYOIFzVcqNP5pD1O_t5dj7-PYGwdIuRbdQ9BqnHwPT8p5i1beaXBTUJPxLqLOB7TtjbdqghZtrNl5N2sLfjItoLth8I2x5vmVRun8TqBx84CuLegp-BYiMg7dGx18Z2fTGv3KpN4hfs0-dcpG-Haa59mfX9fb1W2-3tzcra7WuaKSTHmhdccYNEpSLJWmsqlKxktcEgm4o1AA0VJUnGHNpa6kblOAlEKJNDgodp5dHnt7ZesxmEGFfe2VqW-v1vXhDvNSSCLEI0nsxZEdg_87Q5zqwUQNNnkBP8eaEY4rWvKiSCg_omm3GAN0790E1wehdRJavwmtT0JT7MfphbkZoH0PvRlMAD4Ch_iDn4NLn_P_zhfUSbUf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140928477</pqid></control><display><type>article</type><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><source>MEDLINE</source><source>ACS Publications</source><creator>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</creator><creatorcontrib>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</creatorcontrib><description>In this study, we propose a strategy to explore the impact of the proportion of tris­(2-carboxyethyl)­phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe­(CN)6 3–/Fe­(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</description><identifier>ISSN: 0743-7463</identifier><identifier>ISSN: 1520-5827</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.4c03566</identifier><identifier>PMID: 39628051</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques - methods ; Chemical Sciences ; Electrodes ; Engineering Sciences ; Hexanols - chemistry ; Immobilized Nucleic Acids - chemistry ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Oligonucleotides - chemistry ; Phosphines - chemistry ; Platinum - chemistry ; Sulfhydryl Compounds - chemistry</subject><ispartof>Langmuir, 2024-12, Vol.40 (50), p.26616-26625</ispartof><rights>2024 American Chemical Society</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</cites><orcidid>0000-0001-7613-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.4c03566$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.4c03566$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39628051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04856155$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Omar, Choayb</creatorcontrib><creatorcontrib>Freisa, Martina</creatorcontrib><creatorcontrib>Man, Hiu Mun</creatorcontrib><creatorcontrib>Kechkeche, Djamila</creatorcontrib><creatorcontrib>Dinh, Thi Hong Nhung</creatorcontrib><creatorcontrib>Haghiri-Gosnet, Anne-Marie</creatorcontrib><creatorcontrib>Le Potier, Isabelle</creatorcontrib><creatorcontrib>Gamby, Jean</creatorcontrib><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In this study, we propose a strategy to explore the impact of the proportion of tris­(2-carboxyethyl)­phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe­(CN)6 3–/Fe­(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</description><subject>Biosensing Techniques - methods</subject><subject>Chemical Sciences</subject><subject>Electrodes</subject><subject>Engineering Sciences</subject><subject>Hexanols - chemistry</subject><subject>Immobilized Nucleic Acids - chemistry</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Oligonucleotides - chemistry</subject><subject>Phosphines - chemistry</subject><subject>Platinum - chemistry</subject><subject>Sulfhydryl Compounds - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAURk1paaZp36AULZOFp_q3vQxDmgQmTBfTtZHl67GCLLmSHTJ5o75lNJlJlgXBBXG-T1ydLPtO8JJgSn4qHZdWud0wm7DkGjMh5YdsQQTFuShp8TFb4IKzvOCSnWVfYnzAGFeMV5-zM1ZJWmJBFtm_zTiZwTwbt0PbYOIFzVcqNP5pD1O_t5dj7-PYGwdIuRbdQ9BqnHwPT8p5i1beaXBTUJPxLqLOB7TtjbdqghZtrNl5N2sLfjItoLth8I2x5vmVRun8TqBx84CuLegp-BYiMg7dGx18Z2fTGv3KpN4hfs0-dcpG-Haa59mfX9fb1W2-3tzcra7WuaKSTHmhdccYNEpSLJWmsqlKxktcEgm4o1AA0VJUnGHNpa6kblOAlEKJNDgodp5dHnt7ZesxmEGFfe2VqW-v1vXhDvNSSCLEI0nsxZEdg_87Q5zqwUQNNnkBP8eaEY4rWvKiSCg_omm3GAN0790E1wehdRJavwmtT0JT7MfphbkZoH0PvRlMAD4Ch_iDn4NLn_P_zhfUSbUf</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Omar, Choayb</creator><creator>Freisa, Martina</creator><creator>Man, Hiu Mun</creator><creator>Kechkeche, Djamila</creator><creator>Dinh, Thi Hong Nhung</creator><creator>Haghiri-Gosnet, Anne-Marie</creator><creator>Le Potier, Isabelle</creator><creator>Gamby, Jean</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7613-8872</orcidid></search><sort><creationdate>20241217</creationdate><title>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</title><author>Omar, Choayb ; Freisa, Martina ; Man, Hiu Mun ; Kechkeche, Djamila ; Dinh, Thi Hong Nhung ; Haghiri-Gosnet, Anne-Marie ; Le Potier, Isabelle ; Gamby, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-7ccf33eba6206ac26b983480816e0f2e7e1c659430c46c96cdccf185a5cf14ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biosensing Techniques - methods</topic><topic>Chemical Sciences</topic><topic>Electrodes</topic><topic>Engineering Sciences</topic><topic>Hexanols - chemistry</topic><topic>Immobilized Nucleic Acids - chemistry</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Oligonucleotides - chemistry</topic><topic>Phosphines - chemistry</topic><topic>Platinum - chemistry</topic><topic>Sulfhydryl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omar, Choayb</creatorcontrib><creatorcontrib>Freisa, Martina</creatorcontrib><creatorcontrib>Man, Hiu Mun</creatorcontrib><creatorcontrib>Kechkeche, Djamila</creatorcontrib><creatorcontrib>Dinh, Thi Hong Nhung</creatorcontrib><creatorcontrib>Haghiri-Gosnet, Anne-Marie</creatorcontrib><creatorcontrib>Le Potier, Isabelle</creatorcontrib><creatorcontrib>Gamby, Jean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omar, Choayb</au><au>Freisa, Martina</au><au>Man, Hiu Mun</au><au>Kechkeche, Djamila</au><au>Dinh, Thi Hong Nhung</au><au>Haghiri-Gosnet, Anne-Marie</au><au>Le Potier, Isabelle</au><au>Gamby, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>40</volume><issue>50</issue><spage>26616</spage><epage>26625</epage><pages>26616-26625</pages><issn>0743-7463</issn><issn>1520-5827</issn><eissn>1520-5827</eissn><abstract>In this study, we propose a strategy to explore the impact of the proportion of tris­(2-carboxyethyl)­phosphine (TCEP) and 6-mercaptohexanol (MCH) on the efficiency of oligonucleotide functionalization on PDMS microfluidic channels equipped with pairs of homemade microfabricated platinum microelectrodes. We identified an optimal concentration of these compounds that enables the effective orientation and distribution of probes, thereby facilitating subsequent target hybridization. The experiment included optimizing sample injection into microfluidic channels. We used TCEP as a reducing agent to help the DNA probes adhere to the channel electrode better. This stopped the formation of disulfide bonds during the probe immobilization step. We found the optimal TCEP/MCH mixture ratio (5 mM TCEP and 50 mM MCH), which led to a more uniform distribution and orientation of the DNA probes on the platinum electrode. These optimized conditions resulted in a more compact DNA monolayer and enhanced detection capabilities. The biosensor’s performance was evaluated by the detection of the hybridization of complementary DNA sequences in the presence of equimolar Fe­(CN)6 3–/Fe­(CN)6 4–. The detection of the synthetic GP8 resistance gene is facilitated by a measurable decrease in the electron transfer rate, which is directly proportional to its concentration. Under the optimized conditions, the DNA biosensor showed excellent sensitivity (with a detection limit of 10–17 M) and high specificity when tested against noncomplementary DNA strands.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39628051</pmid><doi>10.1021/acs.langmuir.4c03566</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7613-8872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2024-12, Vol.40 (50), p.26616-26625
issn 0743-7463
1520-5827
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_04856155v1
source MEDLINE; ACS Publications
subjects Biosensing Techniques - methods
Chemical Sciences
Electrodes
Engineering Sciences
Hexanols - chemistry
Immobilized Nucleic Acids - chemistry
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Oligonucleotides - chemistry
Phosphines - chemistry
Platinum - chemistry
Sulfhydryl Compounds - chemistry
title Optimizing Tris(2-Carboxyethyl)phosphine and Mercaptohexanol Concentrations for Thiolated Oligonucleotide Immobilization on Platinum Electrodes in Microfluidic Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Tris(2-Carboxyethyl)phosphine%20and%20Mercaptohexanol%20Concentrations%20for%20Thiolated%20Oligonucleotide%20Immobilization%20on%20Platinum%20Electrodes%20in%20Microfluidic%20Platforms&rft.jtitle=Langmuir&rft.au=Omar,%20Choayb&rft.date=2024-12-17&rft.volume=40&rft.issue=50&rft.spage=26616&rft.epage=26625&rft.pages=26616-26625&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.4c03566&rft_dat=%3Cproquest_hal_p%3E3140928477%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140928477&rft_id=info:pmid/39628051&rfr_iscdi=true