On the Benjamin and Related Equations: On the Benjamin and Related Equations
We consider in this paper various theoretical and numerical issues on classical one dimensional models of internal waves with surface tension. They concern the Cauchy problem, including the long time dynamic, localized solitons or multisolitons, the soliton resolution property. We survey known resul...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2025-03, Vol.56 (1), Article 4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Boletim da Sociedade Brasileira de Matemática |
container_volume | 56 |
creator | Klein, Christian Linares, Felipe Pilod, Didier Saut, Jean-Claude |
description | We consider in this paper various theoretical and numerical issues on classical one dimensional models of internal waves with surface tension. They concern the Cauchy problem, including the long time dynamic, localized solitons or multisolitons, the soliton resolution property. We survey known results, present a few new ones together with open questions and conjectures motivated by numerical simulations. A major issue is to emphasize the differences of the qualitative behavior of solutions with those of the same equations without the capillary term. |
doi_str_mv | 10.1007/s00574-024-00428-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04850444v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142071528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-74cc0eb3fd687b61975fcb4bb4b20a4c64b1547f24c31769bf7b8c091690d5c33</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOCePCwOkkmye6xlmqFQkH0HLLZrN3S7rbJruC3N3X9cxNmmGH4vcfwCLmkcEsB1F0AEApTYLEBWZbSIzKiUmWpUhSPf3aBeErOQlgDgBSCj8j1skm6lUvuXbM227pJTFMmz25jOlcms31vurptwjk5qcwmuIvvOSavD7OX6TxdLB-fppNFahnHLlVoLbiCV6XMVCFprkRlCyxiMTBoJRZUoKoYWk6VzItKFZmFnMocSmE5H5ObwXdlNnrn663xH7o1tZ5PFvpwA8wEIOI7jezVwO58u-9d6PS67X0T39OcIgNFBcsixQbK-jYE76pfWwr6EJ0eotMxOv0VnT5Y80EUIty8Of9n_Y_qEw_sbbs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142071528</pqid></control><display><type>article</type><title>On the Benjamin and Related Equations: On the Benjamin and Related Equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Klein, Christian ; Linares, Felipe ; Pilod, Didier ; Saut, Jean-Claude</creator><creatorcontrib>Klein, Christian ; Linares, Felipe ; Pilod, Didier ; Saut, Jean-Claude</creatorcontrib><description>We consider in this paper various theoretical and numerical issues on classical one dimensional models of internal waves with surface tension. They concern the Cauchy problem, including the long time dynamic, localized solitons or multisolitons, the soliton resolution property. We survey known results, present a few new ones together with open questions and conjectures motivated by numerical simulations. A major issue is to emphasize the differences of the qualitative behavior of solutions with those of the same equations without the capillary term.</description><identifier>ISSN: 1678-7544</identifier><identifier>EISSN: 1678-7714</identifier><identifier>DOI: 10.1007/s00574-024-00428-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Capillary waves ; Cauchy problems ; Internal waves ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; One dimensional models ; Solitary waves ; Surface tension ; Theoretical</subject><ispartof>Boletim da Sociedade Brasileira de Matemática, 2025-03, Vol.56 (1), Article 4</ispartof><rights>The Author(s), under exclusive licence to Brazilian Mathematical Society 2024 corrected publication 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-74cc0eb3fd687b61975fcb4bb4b20a4c64b1547f24c31769bf7b8c091690d5c33</cites><orcidid>0000-0002-5541-808X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00574-024-00428-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00574-024-00428-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04850444$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Christian</creatorcontrib><creatorcontrib>Linares, Felipe</creatorcontrib><creatorcontrib>Pilod, Didier</creatorcontrib><creatorcontrib>Saut, Jean-Claude</creatorcontrib><title>On the Benjamin and Related Equations: On the Benjamin and Related Equations</title><title>Boletim da Sociedade Brasileira de Matemática</title><addtitle>Bull Braz Math Soc, New Series</addtitle><description>We consider in this paper various theoretical and numerical issues on classical one dimensional models of internal waves with surface tension. They concern the Cauchy problem, including the long time dynamic, localized solitons or multisolitons, the soliton resolution property. We survey known results, present a few new ones together with open questions and conjectures motivated by numerical simulations. A major issue is to emphasize the differences of the qualitative behavior of solutions with those of the same equations without the capillary term.</description><subject>Capillary waves</subject><subject>Cauchy problems</subject><subject>Internal waves</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>One dimensional models</subject><subject>Solitary waves</subject><subject>Surface tension</subject><subject>Theoretical</subject><issn>1678-7544</issn><issn>1678-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOCePCwOkkmye6xlmqFQkH0HLLZrN3S7rbJruC3N3X9cxNmmGH4vcfwCLmkcEsB1F0AEApTYLEBWZbSIzKiUmWpUhSPf3aBeErOQlgDgBSCj8j1skm6lUvuXbM227pJTFMmz25jOlcms31vurptwjk5qcwmuIvvOSavD7OX6TxdLB-fppNFahnHLlVoLbiCV6XMVCFprkRlCyxiMTBoJRZUoKoYWk6VzItKFZmFnMocSmE5H5ObwXdlNnrn663xH7o1tZ5PFvpwA8wEIOI7jezVwO58u-9d6PS67X0T39OcIgNFBcsixQbK-jYE76pfWwr6EJ0eotMxOv0VnT5Y80EUIty8Of9n_Y_qEw_sbbs</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Klein, Christian</creator><creator>Linares, Felipe</creator><creator>Pilod, Didier</creator><creator>Saut, Jean-Claude</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5541-808X</orcidid></search><sort><creationdate>20250301</creationdate><title>On the Benjamin and Related Equations</title><author>Klein, Christian ; Linares, Felipe ; Pilod, Didier ; Saut, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-74cc0eb3fd687b61975fcb4bb4b20a4c64b1547f24c31769bf7b8c091690d5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Capillary waves</topic><topic>Cauchy problems</topic><topic>Internal waves</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>One dimensional models</topic><topic>Solitary waves</topic><topic>Surface tension</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Christian</creatorcontrib><creatorcontrib>Linares, Felipe</creatorcontrib><creatorcontrib>Pilod, Didier</creatorcontrib><creatorcontrib>Saut, Jean-Claude</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Christian</au><au>Linares, Felipe</au><au>Pilod, Didier</au><au>Saut, Jean-Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Benjamin and Related Equations: On the Benjamin and Related Equations</atitle><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle><stitle>Bull Braz Math Soc, New Series</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>56</volume><issue>1</issue><artnum>4</artnum><issn>1678-7544</issn><eissn>1678-7714</eissn><abstract>We consider in this paper various theoretical and numerical issues on classical one dimensional models of internal waves with surface tension. They concern the Cauchy problem, including the long time dynamic, localized solitons or multisolitons, the soliton resolution property. We survey known results, present a few new ones together with open questions and conjectures motivated by numerical simulations. A major issue is to emphasize the differences of the qualitative behavior of solutions with those of the same equations without the capillary term.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00574-024-00428-1</doi><orcidid>https://orcid.org/0000-0002-5541-808X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-7544 |
ispartof | Boletim da Sociedade Brasileira de Matemática, 2025-03, Vol.56 (1), Article 4 |
issn | 1678-7544 1678-7714 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04850444v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Capillary waves Cauchy problems Internal waves Mathematical and Computational Physics Mathematics Mathematics and Statistics One dimensional models Solitary waves Surface tension Theoretical |
title | On the Benjamin and Related Equations: On the Benjamin and Related Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Benjamin%20and%20Related%20Equations:%20On%20the%20Benjamin%20and%20Related%20Equations&rft.jtitle=Boletim%20da%20Sociedade%20Brasileira%20de%20Matem%C3%A1tica&rft.au=Klein,%20Christian&rft.date=2025-03-01&rft.volume=56&rft.issue=1&rft.artnum=4&rft.issn=1678-7544&rft.eissn=1678-7714&rft_id=info:doi/10.1007/s00574-024-00428-1&rft_dat=%3Cproquest_hal_p%3E3142071528%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142071528&rft_id=info:pmid/&rfr_iscdi=true |