Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations
Perfectly diffuse wavefields are the underlying assumption for noise correlation tomography in seismology, non-destructive testing and elastography. However, perfectly diffuse fields are rarely encountered in real world applications. We show that homogeneously distributed magnetic micro-particles al...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2024-12, Vol.22 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review applied |
container_volume | 22 |
creator | Laloy-Borgna, G. Giammarinaro, B. Sun, Z. Catheline, S. Aichele, J. |
description | Perfectly diffuse wavefields are the underlying assumption for noise correlation tomography in seismology, non-destructive testing and elastography. However, perfectly diffuse fields are rarely encountered in real world applications. We show that homogeneously distributed magnetic micro-particles allow to instantaneously generate a diffuse wavefield, which is imaged using a clinical probe connected to a fully-programmable ultrasound scanner. The particles are placed inside a bi-layered hydrogel and act as elastic wave sources on excitation by a magnetic pulse. Using ultrafast ultrasound imaging coupled to phase tracking, the diffuse elastic wave-field is imaged. This allows measuring the local wave velocity everywhere on the image through noise-correlation algorithms inspired by seismology. Thanks to this instantaneous diffuse wavefield, a very short acquisition time is sufficient to retrieve the wave speed contrast of the bilayered phantom. The correlation time window can be shrunk down to 3 time samples, which we show in a numerical simulation mimicking the experimental conditions. Our experimental and numerical results are consistent with theoretical predictions made by information theory, and pave the way for real-time elasticity imaging. This is of particular interest for medical treatment monitoring through real-time tissue elasticity assessment, and is applicable in related fields such as seismology or non-destructive testing. |
doi_str_mv | 10.1103/PhysRevApplied.22.064061 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04844048v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04844048v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04844048v13</originalsourceid><addsrcrecordid>eNqVjUFLw0AQhRexYNH-h7l6SJxNYq3eiig9eBCp5zDNTpqR7W6YTVP6743gwauX9x4fHzxjwGJuLZZ37905ffC47nsv7PKiyHFZ4dJemHlRljZ7QPt4-WdfmUVKX4hobXGPK5ybbhtPpA6UyWeDHBhSx6TZiUYGOdBewv4JPv2g5DgkhgkFHqSBFI_acAIOtPMMSr04cNK2x8lqhb2DJqqyp0FiSDdm1pJPvPjta3P7-rJ93mQd-brX6UrPdSSpN-u3-odhtaqqKUZb_sf9BmBXVzY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations</title><source>American Physical Society Journals</source><creator>Laloy-Borgna, G. ; Giammarinaro, B. ; Sun, Z. ; Catheline, S. ; Aichele, J.</creator><creatorcontrib>Laloy-Borgna, G. ; Giammarinaro, B. ; Sun, Z. ; Catheline, S. ; Aichele, J.</creatorcontrib><description>Perfectly diffuse wavefields are the underlying assumption for noise correlation tomography in seismology, non-destructive testing and elastography. However, perfectly diffuse fields are rarely encountered in real world applications. We show that homogeneously distributed magnetic micro-particles allow to instantaneously generate a diffuse wavefield, which is imaged using a clinical probe connected to a fully-programmable ultrasound scanner. The particles are placed inside a bi-layered hydrogel and act as elastic wave sources on excitation by a magnetic pulse. Using ultrafast ultrasound imaging coupled to phase tracking, the diffuse elastic wave-field is imaged. This allows measuring the local wave velocity everywhere on the image through noise-correlation algorithms inspired by seismology. Thanks to this instantaneous diffuse wavefield, a very short acquisition time is sufficient to retrieve the wave speed contrast of the bilayered phantom. The correlation time window can be shrunk down to 3 time samples, which we show in a numerical simulation mimicking the experimental conditions. Our experimental and numerical results are consistent with theoretical predictions made by information theory, and pave the way for real-time elasticity imaging. This is of particular interest for medical treatment monitoring through real-time tissue elasticity assessment, and is applicable in related fields such as seismology or non-destructive testing.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.22.064061</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Acoustics ; Bioengineering ; Imaging ; Life Sciences ; Mechanics ; Physics ; Solid mechanics</subject><ispartof>Physical review applied, 2024-12, Vol.22 (6)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8019-9053 ; 0000-0001-6839-5203 ; 0000-0003-3096-6060 ; 0000-0001-9968-1915 ; 0000-0003-3096-6060 ; 0000-0001-8019-9053 ; 0000-0001-9968-1915 ; 0000-0001-6839-5203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04844048$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laloy-Borgna, G.</creatorcontrib><creatorcontrib>Giammarinaro, B.</creatorcontrib><creatorcontrib>Sun, Z.</creatorcontrib><creatorcontrib>Catheline, S.</creatorcontrib><creatorcontrib>Aichele, J.</creatorcontrib><title>Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations</title><title>Physical review applied</title><description>Perfectly diffuse wavefields are the underlying assumption for noise correlation tomography in seismology, non-destructive testing and elastography. However, perfectly diffuse fields are rarely encountered in real world applications. We show that homogeneously distributed magnetic micro-particles allow to instantaneously generate a diffuse wavefield, which is imaged using a clinical probe connected to a fully-programmable ultrasound scanner. The particles are placed inside a bi-layered hydrogel and act as elastic wave sources on excitation by a magnetic pulse. Using ultrafast ultrasound imaging coupled to phase tracking, the diffuse elastic wave-field is imaged. This allows measuring the local wave velocity everywhere on the image through noise-correlation algorithms inspired by seismology. Thanks to this instantaneous diffuse wavefield, a very short acquisition time is sufficient to retrieve the wave speed contrast of the bilayered phantom. The correlation time window can be shrunk down to 3 time samples, which we show in a numerical simulation mimicking the experimental conditions. Our experimental and numerical results are consistent with theoretical predictions made by information theory, and pave the way for real-time elasticity imaging. This is of particular interest for medical treatment monitoring through real-time tissue elasticity assessment, and is applicable in related fields such as seismology or non-destructive testing.</description><subject>Acoustics</subject><subject>Bioengineering</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjUFLw0AQhRexYNH-h7l6SJxNYq3eiig9eBCp5zDNTpqR7W6YTVP6743gwauX9x4fHzxjwGJuLZZ37905ffC47nsv7PKiyHFZ4dJemHlRljZ7QPt4-WdfmUVKX4hobXGPK5ybbhtPpA6UyWeDHBhSx6TZiUYGOdBewv4JPv2g5DgkhgkFHqSBFI_acAIOtPMMSr04cNK2x8lqhb2DJqqyp0FiSDdm1pJPvPjta3P7-rJ93mQd-brX6UrPdSSpN-u3-odhtaqqKUZb_sf9BmBXVzY</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>Laloy-Borgna, G.</creator><creator>Giammarinaro, B.</creator><creator>Sun, Z.</creator><creator>Catheline, S.</creator><creator>Aichele, J.</creator><general>American Physical Society</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8019-9053</orcidid><orcidid>https://orcid.org/0000-0001-6839-5203</orcidid><orcidid>https://orcid.org/0000-0003-3096-6060</orcidid><orcidid>https://orcid.org/0000-0001-9968-1915</orcidid><orcidid>https://orcid.org/0000-0003-3096-6060</orcidid><orcidid>https://orcid.org/0000-0001-8019-9053</orcidid><orcidid>https://orcid.org/0000-0001-9968-1915</orcidid><orcidid>https://orcid.org/0000-0001-6839-5203</orcidid></search><sort><creationdate>20241217</creationdate><title>Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations</title><author>Laloy-Borgna, G. ; Giammarinaro, B. ; Sun, Z. ; Catheline, S. ; Aichele, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04844048v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Bioengineering</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laloy-Borgna, G.</creatorcontrib><creatorcontrib>Giammarinaro, B.</creatorcontrib><creatorcontrib>Sun, Z.</creatorcontrib><creatorcontrib>Catheline, S.</creatorcontrib><creatorcontrib>Aichele, J.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laloy-Borgna, G.</au><au>Giammarinaro, B.</au><au>Sun, Z.</au><au>Catheline, S.</au><au>Aichele, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations</atitle><jtitle>Physical review applied</jtitle><date>2024-12-17</date><risdate>2024</risdate><volume>22</volume><issue>6</issue><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Perfectly diffuse wavefields are the underlying assumption for noise correlation tomography in seismology, non-destructive testing and elastography. However, perfectly diffuse fields are rarely encountered in real world applications. We show that homogeneously distributed magnetic micro-particles allow to instantaneously generate a diffuse wavefield, which is imaged using a clinical probe connected to a fully-programmable ultrasound scanner. The particles are placed inside a bi-layered hydrogel and act as elastic wave sources on excitation by a magnetic pulse. Using ultrafast ultrasound imaging coupled to phase tracking, the diffuse elastic wave-field is imaged. This allows measuring the local wave velocity everywhere on the image through noise-correlation algorithms inspired by seismology. Thanks to this instantaneous diffuse wavefield, a very short acquisition time is sufficient to retrieve the wave speed contrast of the bilayered phantom. The correlation time window can be shrunk down to 3 time samples, which we show in a numerical simulation mimicking the experimental conditions. Our experimental and numerical results are consistent with theoretical predictions made by information theory, and pave the way for real-time elasticity imaging. This is of particular interest for medical treatment monitoring through real-time tissue elasticity assessment, and is applicable in related fields such as seismology or non-destructive testing.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.22.064061</doi><orcidid>https://orcid.org/0000-0001-8019-9053</orcidid><orcidid>https://orcid.org/0000-0001-6839-5203</orcidid><orcidid>https://orcid.org/0000-0003-3096-6060</orcidid><orcidid>https://orcid.org/0000-0001-9968-1915</orcidid><orcidid>https://orcid.org/0000-0003-3096-6060</orcidid><orcidid>https://orcid.org/0000-0001-8019-9053</orcidid><orcidid>https://orcid.org/0000-0001-9968-1915</orcidid><orcidid>https://orcid.org/0000-0001-6839-5203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2024-12, Vol.22 (6) |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04844048v1 |
source | American Physical Society Journals |
subjects | Acoustics Bioengineering Imaging Life Sciences Mechanics Physics Solid mechanics |
title | Toward real-time shear-wave imaging: Ultradense magnetic sources enable rapid diffuse field correlations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20real-time%20shear-wave%20imaging:%20Ultradense%20magnetic%20sources%20enable%20rapid%20diffuse%20field%20correlations&rft.jtitle=Physical%20review%20applied&rft.au=Laloy-Borgna,%20G.&rft.date=2024-12-17&rft.volume=22&rft.issue=6&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.22.064061&rft_dat=%3Chal%3Eoai_HAL_hal_04844048v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |