Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide
ABSTRACT Aim Arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) have different impacts on nutrient cycling, carbon storage, community dynamics and enhancement of photosynthesis by rising CO2. Recent global analyses have concluded that patterns of AM/ECM dominance in forests worldwide are shaped b...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2025-01, Vol.34 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Global ecology and biogeography |
container_volume | 34 |
creator | Hua, Xiaobin Lusk, Christopher H. Dickie, Ian A. Adu‐Bredu, Stephen Allen, Kathryn J. Araus, Viviana Augusto, Laurent Barsukov, Pavel Bauman, David Brédoire, Félix Burslem, David F. R. P. Dalling, James W. Depauw, Leen Dexter, Kyle G. Drouet, Thomas Godlee, John L. Godoy, Roberto Gutiérrez, Rodrigo A. Muledi, Jonathan Ilunga Jacobs, Arnaud Kooyman, Robert Latorre, Claudio Angulo, Jesús López Macé, Sébastien Maes, Sybryn L. Gonçalves, Francisco Maiato Pedro Junior, Ben Hur Marimon Nicolas, Manuel Nilus, Reuben O'Brien, Michael Menor, Imma Oliveras Piper, Frida I. Read, Jennifer Reynolds, Glen Saldaña, Alfredo Marimon, Beatriz Schwantes Verheyen, Kris Westoby, Mark Wigley, Benjamin Wright, Ian J. |
description | ABSTRACT
Aim
Arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) have different impacts on nutrient cycling, carbon storage, community dynamics and enhancement of photosynthesis by rising CO2. Recent global analyses have concluded that patterns of AM/ECM dominance in forests worldwide are shaped by climate, with soil nutrients contributing negligible additional explanatory power. However, their reliance on nutrient data from GIS surfaces masks important local influences of parent material, topography and soil age on soil nutrient status. We asked if use of site‐specific nutrient data reveals a more important role for nutrients.
Time Period
Present day.
Location
Global dataset comprising 703 sites, encompassing forests, savanna/woodlands, shrublands and deserts on all continents except Antarctica.
Taxa Studied
Arborescent plants, including angiosperms, gymnosperms and tree ferns.
Methods
Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the effects of climate variables, soil nitrogen and soil phosphorus on the proportional representation of ECM and of non‐mycorrhizal species (NM) in woody vegetation.
Results
GAMLSS showed a strong negative relationship of ECM representation with mean annual temperature (MAT), and a strong negative relationship with soil total nitrogen. NM representation was highest on dry sites and phosphorus‐poor sites. Reanalysis showed that GIS‐derived soil nutrient data had less explanatory power than site‐specific nutrient data, and resulted in poorer model fits.
Conclusions
Our results support the long‐held belief that soil nutrients as well as climate influence the relative fitness of different mycorrhizal syndromes worldwide, and demonstrate the value of using site‐specific nutrient data. Soil nutrients should be considered when predicting the impact of climate change on the mycorrhizal composition of vegetation and resulting shifts in ecosystem processes. |
doi_str_mv | 10.1111/geb.13936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04839912v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160662040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2566-e737f2db8351b3338ace78c4b92b4fadb35678265e82ea4d845fa4dc776ea51f3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEs8Ff2CJFYtSPxLHXRbKo1IBifLaWY4zaV1CHBy3qGzgE_hGvgSXorJiNjManXt1pRtF-wQfkTDtEWRHhHUYX4u2SMx5S1Am1lc3fdyMtptmgjFO4oRvRe9D4-Hr43NYgzaF0ehq6p2ByqOe8grdwAxUifwYUP-5ts6rSgOyBRpaUzbIVKjnzMxUox_kcq6tc2PzFiSX6mnhe1cv6Adr8zm6hxF45Y2twsOV-avJYTfaKFTZwN7v3onuzk5vTy5ag-vz_kl30NI0CckhZWlB80ywhGSMMaE0pELHWYdmcaHyjCU8FZQnICioOBdxUoSl05SDSkjBdqLDpe9YlbJ25lm5ubTKyIvuQC5-OBas0yF0RgJ7sGRrZ1-m0Hg5sVNXhXiSEY45pzjGf47a2aZxUKxsCZaLLmToQv50Edj2kn01Jcz_B-X56fFS8Q2esIzy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160662040</pqid></control><display><type>article</type><title>Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hua, Xiaobin ; Lusk, Christopher H. ; Dickie, Ian A. ; Adu‐Bredu, Stephen ; Allen, Kathryn J. ; Araus, Viviana ; Augusto, Laurent ; Barsukov, Pavel ; Bauman, David ; Brédoire, Félix ; Burslem, David F. R. P. ; Dalling, James W. ; Depauw, Leen ; Dexter, Kyle G. ; Drouet, Thomas ; Godlee, John L. ; Godoy, Roberto ; Gutiérrez, Rodrigo A. ; Muledi, Jonathan Ilunga ; Jacobs, Arnaud ; Kooyman, Robert ; Latorre, Claudio ; Angulo, Jesús López ; Macé, Sébastien ; Maes, Sybryn L. ; Gonçalves, Francisco Maiato Pedro ; Junior, Ben Hur Marimon ; Nicolas, Manuel ; Nilus, Reuben ; O'Brien, Michael ; Menor, Imma Oliveras ; Piper, Frida I. ; Read, Jennifer ; Reynolds, Glen ; Saldaña, Alfredo ; Marimon, Beatriz Schwantes ; Verheyen, Kris ; Westoby, Mark ; Wigley, Benjamin ; Wright, Ian J.</creator><creatorcontrib>Hua, Xiaobin ; Lusk, Christopher H. ; Dickie, Ian A. ; Adu‐Bredu, Stephen ; Allen, Kathryn J. ; Araus, Viviana ; Augusto, Laurent ; Barsukov, Pavel ; Bauman, David ; Brédoire, Félix ; Burslem, David F. R. P. ; Dalling, James W. ; Depauw, Leen ; Dexter, Kyle G. ; Drouet, Thomas ; Godlee, John L. ; Godoy, Roberto ; Gutiérrez, Rodrigo A. ; Muledi, Jonathan Ilunga ; Jacobs, Arnaud ; Kooyman, Robert ; Latorre, Claudio ; Angulo, Jesús López ; Macé, Sébastien ; Maes, Sybryn L. ; Gonçalves, Francisco Maiato Pedro ; Junior, Ben Hur Marimon ; Nicolas, Manuel ; Nilus, Reuben ; O'Brien, Michael ; Menor, Imma Oliveras ; Piper, Frida I. ; Read, Jennifer ; Reynolds, Glen ; Saldaña, Alfredo ; Marimon, Beatriz Schwantes ; Verheyen, Kris ; Westoby, Mark ; Wigley, Benjamin ; Wright, Ian J.</creatorcontrib><description>ABSTRACT
Aim
Arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) have different impacts on nutrient cycling, carbon storage, community dynamics and enhancement of photosynthesis by rising CO2. Recent global analyses have concluded that patterns of AM/ECM dominance in forests worldwide are shaped by climate, with soil nutrients contributing negligible additional explanatory power. However, their reliance on nutrient data from GIS surfaces masks important local influences of parent material, topography and soil age on soil nutrient status. We asked if use of site‐specific nutrient data reveals a more important role for nutrients.
Time Period
Present day.
Location
Global dataset comprising 703 sites, encompassing forests, savanna/woodlands, shrublands and deserts on all continents except Antarctica.
Taxa Studied
Arborescent plants, including angiosperms, gymnosperms and tree ferns.
Methods
Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the effects of climate variables, soil nitrogen and soil phosphorus on the proportional representation of ECM and of non‐mycorrhizal species (NM) in woody vegetation.
Results
GAMLSS showed a strong negative relationship of ECM representation with mean annual temperature (MAT), and a strong negative relationship with soil total nitrogen. NM representation was highest on dry sites and phosphorus‐poor sites. Reanalysis showed that GIS‐derived soil nutrient data had less explanatory power than site‐specific nutrient data, and resulted in poorer model fits.
Conclusions
Our results support the long‐held belief that soil nutrients as well as climate influence the relative fitness of different mycorrhizal syndromes worldwide, and demonstrate the value of using site‐specific nutrient data. Soil nutrients should be considered when predicting the impact of climate change on the mycorrhizal composition of vegetation and resulting shifts in ecosystem processes.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>EISSN: 1466-822X</identifier><identifier>DOI: 10.1111/geb.13936</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Agricultural sciences ; Angiosperms ; Arbuscular mycorrhizas ; aridity ; Carbon cycle ; Carbon dioxide ; Carbon sequestration ; Climate change ; Climate effects ; Climate models ; Climate prediction ; Climatology ; Earth Sciences ; ectomycorrhiza ; Ectomycorrhizas ; Environmental impact ; Ferns ; Gymnosperms ; Life Sciences ; Nitrogen ; non‐mycorrhizal plants ; Nutrient cycles ; Nutrient dynamics ; Nutrient status ; Nutrients ; Phosphorus ; Photosynthesis ; Plants (botany) ; Representations ; Reproductive fitness ; Sciences of the Universe ; Shape effects ; Soil analysis ; soil nitrogen ; Soil nutrients ; soil phosphorus ; Soil study ; Soil temperature ; Soils ; temperature ; Vegetal Biology ; Vegetation ; Woodlands ; Woody plants</subject><ispartof>Global ecology and biogeography, 2025-01, Vol.34 (1), p.n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2025 John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2566-e737f2db8351b3338ace78c4b92b4fadb35678265e82ea4d845fa4dc776ea51f3</cites><orcidid>0000-0001-8443-5068 ; 0000-0002-9037-7957 ; 0000-0002-4727-3482 ; 0000-0003-0943-8423 ; 0000-0001-9115-6518 ; 0000-0001-5345-2236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04839912$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hua, Xiaobin</creatorcontrib><creatorcontrib>Lusk, Christopher H.</creatorcontrib><creatorcontrib>Dickie, Ian A.</creatorcontrib><creatorcontrib>Adu‐Bredu, Stephen</creatorcontrib><creatorcontrib>Allen, Kathryn J.</creatorcontrib><creatorcontrib>Araus, Viviana</creatorcontrib><creatorcontrib>Augusto, Laurent</creatorcontrib><creatorcontrib>Barsukov, Pavel</creatorcontrib><creatorcontrib>Bauman, David</creatorcontrib><creatorcontrib>Brédoire, Félix</creatorcontrib><creatorcontrib>Burslem, David F. R. P.</creatorcontrib><creatorcontrib>Dalling, James W.</creatorcontrib><creatorcontrib>Depauw, Leen</creatorcontrib><creatorcontrib>Dexter, Kyle G.</creatorcontrib><creatorcontrib>Drouet, Thomas</creatorcontrib><creatorcontrib>Godlee, John L.</creatorcontrib><creatorcontrib>Godoy, Roberto</creatorcontrib><creatorcontrib>Gutiérrez, Rodrigo A.</creatorcontrib><creatorcontrib>Muledi, Jonathan Ilunga</creatorcontrib><creatorcontrib>Jacobs, Arnaud</creatorcontrib><creatorcontrib>Kooyman, Robert</creatorcontrib><creatorcontrib>Latorre, Claudio</creatorcontrib><creatorcontrib>Angulo, Jesús López</creatorcontrib><creatorcontrib>Macé, Sébastien</creatorcontrib><creatorcontrib>Maes, Sybryn L.</creatorcontrib><creatorcontrib>Gonçalves, Francisco Maiato Pedro</creatorcontrib><creatorcontrib>Junior, Ben Hur Marimon</creatorcontrib><creatorcontrib>Nicolas, Manuel</creatorcontrib><creatorcontrib>Nilus, Reuben</creatorcontrib><creatorcontrib>O'Brien, Michael</creatorcontrib><creatorcontrib>Menor, Imma Oliveras</creatorcontrib><creatorcontrib>Piper, Frida I.</creatorcontrib><creatorcontrib>Read, Jennifer</creatorcontrib><creatorcontrib>Reynolds, Glen</creatorcontrib><creatorcontrib>Saldaña, Alfredo</creatorcontrib><creatorcontrib>Marimon, Beatriz Schwantes</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>Westoby, Mark</creatorcontrib><creatorcontrib>Wigley, Benjamin</creatorcontrib><creatorcontrib>Wright, Ian J.</creatorcontrib><title>Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide</title><title>Global ecology and biogeography</title><description>ABSTRACT
Aim
Arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) have different impacts on nutrient cycling, carbon storage, community dynamics and enhancement of photosynthesis by rising CO2. Recent global analyses have concluded that patterns of AM/ECM dominance in forests worldwide are shaped by climate, with soil nutrients contributing negligible additional explanatory power. However, their reliance on nutrient data from GIS surfaces masks important local influences of parent material, topography and soil age on soil nutrient status. We asked if use of site‐specific nutrient data reveals a more important role for nutrients.
Time Period
Present day.
Location
Global dataset comprising 703 sites, encompassing forests, savanna/woodlands, shrublands and deserts on all continents except Antarctica.
Taxa Studied
Arborescent plants, including angiosperms, gymnosperms and tree ferns.
Methods
Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the effects of climate variables, soil nitrogen and soil phosphorus on the proportional representation of ECM and of non‐mycorrhizal species (NM) in woody vegetation.
Results
GAMLSS showed a strong negative relationship of ECM representation with mean annual temperature (MAT), and a strong negative relationship with soil total nitrogen. NM representation was highest on dry sites and phosphorus‐poor sites. Reanalysis showed that GIS‐derived soil nutrient data had less explanatory power than site‐specific nutrient data, and resulted in poorer model fits.
Conclusions
Our results support the long‐held belief that soil nutrients as well as climate influence the relative fitness of different mycorrhizal syndromes worldwide, and demonstrate the value of using site‐specific nutrient data. Soil nutrients should be considered when predicting the impact of climate change on the mycorrhizal composition of vegetation and resulting shifts in ecosystem processes.</description><subject>Agricultural sciences</subject><subject>Angiosperms</subject><subject>Arbuscular mycorrhizas</subject><subject>aridity</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Climatology</subject><subject>Earth Sciences</subject><subject>ectomycorrhiza</subject><subject>Ectomycorrhizas</subject><subject>Environmental impact</subject><subject>Ferns</subject><subject>Gymnosperms</subject><subject>Life Sciences</subject><subject>Nitrogen</subject><subject>non‐mycorrhizal plants</subject><subject>Nutrient cycles</subject><subject>Nutrient dynamics</subject><subject>Nutrient status</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Photosynthesis</subject><subject>Plants (botany)</subject><subject>Representations</subject><subject>Reproductive fitness</subject><subject>Sciences of the Universe</subject><subject>Shape effects</subject><subject>Soil analysis</subject><subject>soil nitrogen</subject><subject>Soil nutrients</subject><subject>soil phosphorus</subject><subject>Soil study</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>temperature</subject><subject>Vegetal Biology</subject><subject>Vegetation</subject><subject>Woodlands</subject><subject>Woody plants</subject><issn>1466-822X</issn><issn>1466-8238</issn><issn>1466-822X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEs8Ff2CJFYtSPxLHXRbKo1IBifLaWY4zaV1CHBy3qGzgE_hGvgSXorJiNjManXt1pRtF-wQfkTDtEWRHhHUYX4u2SMx5S1Am1lc3fdyMtptmgjFO4oRvRe9D4-Hr43NYgzaF0ehq6p2ByqOe8grdwAxUifwYUP-5ts6rSgOyBRpaUzbIVKjnzMxUox_kcq6tc2PzFiSX6mnhe1cv6Adr8zm6hxF45Y2twsOV-avJYTfaKFTZwN7v3onuzk5vTy5ag-vz_kl30NI0CckhZWlB80ywhGSMMaE0pELHWYdmcaHyjCU8FZQnICioOBdxUoSl05SDSkjBdqLDpe9YlbJ25lm5ubTKyIvuQC5-OBas0yF0RgJ7sGRrZ1-m0Hg5sVNXhXiSEY45pzjGf47a2aZxUKxsCZaLLmToQv50Edj2kn01Jcz_B-X56fFS8Q2esIzy</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Hua, Xiaobin</creator><creator>Lusk, Christopher H.</creator><creator>Dickie, Ian A.</creator><creator>Adu‐Bredu, Stephen</creator><creator>Allen, Kathryn J.</creator><creator>Araus, Viviana</creator><creator>Augusto, Laurent</creator><creator>Barsukov, Pavel</creator><creator>Bauman, David</creator><creator>Brédoire, Félix</creator><creator>Burslem, David F. R. P.</creator><creator>Dalling, James W.</creator><creator>Depauw, Leen</creator><creator>Dexter, Kyle G.</creator><creator>Drouet, Thomas</creator><creator>Godlee, John L.</creator><creator>Godoy, Roberto</creator><creator>Gutiérrez, Rodrigo A.</creator><creator>Muledi, Jonathan Ilunga</creator><creator>Jacobs, Arnaud</creator><creator>Kooyman, Robert</creator><creator>Latorre, Claudio</creator><creator>Angulo, Jesús López</creator><creator>Macé, Sébastien</creator><creator>Maes, Sybryn L.</creator><creator>Gonçalves, Francisco Maiato Pedro</creator><creator>Junior, Ben Hur Marimon</creator><creator>Nicolas, Manuel</creator><creator>Nilus, Reuben</creator><creator>O'Brien, Michael</creator><creator>Menor, Imma Oliveras</creator><creator>Piper, Frida I.</creator><creator>Read, Jennifer</creator><creator>Reynolds, Glen</creator><creator>Saldaña, Alfredo</creator><creator>Marimon, Beatriz Schwantes</creator><creator>Verheyen, Kris</creator><creator>Westoby, Mark</creator><creator>Wigley, Benjamin</creator><creator>Wright, Ian J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8443-5068</orcidid><orcidid>https://orcid.org/0000-0002-9037-7957</orcidid><orcidid>https://orcid.org/0000-0002-4727-3482</orcidid><orcidid>https://orcid.org/0000-0003-0943-8423</orcidid><orcidid>https://orcid.org/0000-0001-9115-6518</orcidid><orcidid>https://orcid.org/0000-0001-5345-2236</orcidid></search><sort><creationdate>202501</creationdate><title>Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide</title><author>Hua, Xiaobin ; Lusk, Christopher H. ; Dickie, Ian A. ; Adu‐Bredu, Stephen ; Allen, Kathryn J. ; Araus, Viviana ; Augusto, Laurent ; Barsukov, Pavel ; Bauman, David ; Brédoire, Félix ; Burslem, David F. R. P. ; Dalling, James W. ; Depauw, Leen ; Dexter, Kyle G. ; Drouet, Thomas ; Godlee, John L. ; Godoy, Roberto ; Gutiérrez, Rodrigo A. ; Muledi, Jonathan Ilunga ; Jacobs, Arnaud ; Kooyman, Robert ; Latorre, Claudio ; Angulo, Jesús López ; Macé, Sébastien ; Maes, Sybryn L. ; Gonçalves, Francisco Maiato Pedro ; Junior, Ben Hur Marimon ; Nicolas, Manuel ; Nilus, Reuben ; O'Brien, Michael ; Menor, Imma Oliveras ; Piper, Frida I. ; Read, Jennifer ; Reynolds, Glen ; Saldaña, Alfredo ; Marimon, Beatriz Schwantes ; Verheyen, Kris ; Westoby, Mark ; Wigley, Benjamin ; Wright, Ian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2566-e737f2db8351b3338ace78c4b92b4fadb35678265e82ea4d845fa4dc776ea51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Agricultural sciences</topic><topic>Angiosperms</topic><topic>Arbuscular mycorrhizas</topic><topic>aridity</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Climatology</topic><topic>Earth Sciences</topic><topic>ectomycorrhiza</topic><topic>Ectomycorrhizas</topic><topic>Environmental impact</topic><topic>Ferns</topic><topic>Gymnosperms</topic><topic>Life Sciences</topic><topic>Nitrogen</topic><topic>non‐mycorrhizal plants</topic><topic>Nutrient cycles</topic><topic>Nutrient dynamics</topic><topic>Nutrient status</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Photosynthesis</topic><topic>Plants (botany)</topic><topic>Representations</topic><topic>Reproductive fitness</topic><topic>Sciences of the Universe</topic><topic>Shape effects</topic><topic>Soil analysis</topic><topic>soil nitrogen</topic><topic>Soil nutrients</topic><topic>soil phosphorus</topic><topic>Soil study</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>temperature</topic><topic>Vegetal Biology</topic><topic>Vegetation</topic><topic>Woodlands</topic><topic>Woody plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xiaobin</creatorcontrib><creatorcontrib>Lusk, Christopher H.</creatorcontrib><creatorcontrib>Dickie, Ian A.</creatorcontrib><creatorcontrib>Adu‐Bredu, Stephen</creatorcontrib><creatorcontrib>Allen, Kathryn J.</creatorcontrib><creatorcontrib>Araus, Viviana</creatorcontrib><creatorcontrib>Augusto, Laurent</creatorcontrib><creatorcontrib>Barsukov, Pavel</creatorcontrib><creatorcontrib>Bauman, David</creatorcontrib><creatorcontrib>Brédoire, Félix</creatorcontrib><creatorcontrib>Burslem, David F. R. P.</creatorcontrib><creatorcontrib>Dalling, James W.</creatorcontrib><creatorcontrib>Depauw, Leen</creatorcontrib><creatorcontrib>Dexter, Kyle G.</creatorcontrib><creatorcontrib>Drouet, Thomas</creatorcontrib><creatorcontrib>Godlee, John L.</creatorcontrib><creatorcontrib>Godoy, Roberto</creatorcontrib><creatorcontrib>Gutiérrez, Rodrigo A.</creatorcontrib><creatorcontrib>Muledi, Jonathan Ilunga</creatorcontrib><creatorcontrib>Jacobs, Arnaud</creatorcontrib><creatorcontrib>Kooyman, Robert</creatorcontrib><creatorcontrib>Latorre, Claudio</creatorcontrib><creatorcontrib>Angulo, Jesús López</creatorcontrib><creatorcontrib>Macé, Sébastien</creatorcontrib><creatorcontrib>Maes, Sybryn L.</creatorcontrib><creatorcontrib>Gonçalves, Francisco Maiato Pedro</creatorcontrib><creatorcontrib>Junior, Ben Hur Marimon</creatorcontrib><creatorcontrib>Nicolas, Manuel</creatorcontrib><creatorcontrib>Nilus, Reuben</creatorcontrib><creatorcontrib>O'Brien, Michael</creatorcontrib><creatorcontrib>Menor, Imma Oliveras</creatorcontrib><creatorcontrib>Piper, Frida I.</creatorcontrib><creatorcontrib>Read, Jennifer</creatorcontrib><creatorcontrib>Reynolds, Glen</creatorcontrib><creatorcontrib>Saldaña, Alfredo</creatorcontrib><creatorcontrib>Marimon, Beatriz Schwantes</creatorcontrib><creatorcontrib>Verheyen, Kris</creatorcontrib><creatorcontrib>Westoby, Mark</creatorcontrib><creatorcontrib>Wigley, Benjamin</creatorcontrib><creatorcontrib>Wright, Ian J.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Xiaobin</au><au>Lusk, Christopher H.</au><au>Dickie, Ian A.</au><au>Adu‐Bredu, Stephen</au><au>Allen, Kathryn J.</au><au>Araus, Viviana</au><au>Augusto, Laurent</au><au>Barsukov, Pavel</au><au>Bauman, David</au><au>Brédoire, Félix</au><au>Burslem, David F. R. P.</au><au>Dalling, James W.</au><au>Depauw, Leen</au><au>Dexter, Kyle G.</au><au>Drouet, Thomas</au><au>Godlee, John L.</au><au>Godoy, Roberto</au><au>Gutiérrez, Rodrigo A.</au><au>Muledi, Jonathan Ilunga</au><au>Jacobs, Arnaud</au><au>Kooyman, Robert</au><au>Latorre, Claudio</au><au>Angulo, Jesús López</au><au>Macé, Sébastien</au><au>Maes, Sybryn L.</au><au>Gonçalves, Francisco Maiato Pedro</au><au>Junior, Ben Hur Marimon</au><au>Nicolas, Manuel</au><au>Nilus, Reuben</au><au>O'Brien, Michael</au><au>Menor, Imma Oliveras</au><au>Piper, Frida I.</au><au>Read, Jennifer</au><au>Reynolds, Glen</au><au>Saldaña, Alfredo</au><au>Marimon, Beatriz Schwantes</au><au>Verheyen, Kris</au><au>Westoby, Mark</au><au>Wigley, Benjamin</au><au>Wright, Ian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide</atitle><jtitle>Global ecology and biogeography</jtitle><date>2025-01</date><risdate>2025</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>1466-822X</issn><eissn>1466-8238</eissn><eissn>1466-822X</eissn><abstract>ABSTRACT
Aim
Arbuscular mycorrhizas (AM) and ectomycorrhizas (ECM) have different impacts on nutrient cycling, carbon storage, community dynamics and enhancement of photosynthesis by rising CO2. Recent global analyses have concluded that patterns of AM/ECM dominance in forests worldwide are shaped by climate, with soil nutrients contributing negligible additional explanatory power. However, their reliance on nutrient data from GIS surfaces masks important local influences of parent material, topography and soil age on soil nutrient status. We asked if use of site‐specific nutrient data reveals a more important role for nutrients.
Time Period
Present day.
Location
Global dataset comprising 703 sites, encompassing forests, savanna/woodlands, shrublands and deserts on all continents except Antarctica.
Taxa Studied
Arborescent plants, including angiosperms, gymnosperms and tree ferns.
Methods
Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the effects of climate variables, soil nitrogen and soil phosphorus on the proportional representation of ECM and of non‐mycorrhizal species (NM) in woody vegetation.
Results
GAMLSS showed a strong negative relationship of ECM representation with mean annual temperature (MAT), and a strong negative relationship with soil total nitrogen. NM representation was highest on dry sites and phosphorus‐poor sites. Reanalysis showed that GIS‐derived soil nutrient data had less explanatory power than site‐specific nutrient data, and resulted in poorer model fits.
Conclusions
Our results support the long‐held belief that soil nutrients as well as climate influence the relative fitness of different mycorrhizal syndromes worldwide, and demonstrate the value of using site‐specific nutrient data. Soil nutrients should be considered when predicting the impact of climate change on the mycorrhizal composition of vegetation and resulting shifts in ecosystem processes.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13936</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8443-5068</orcidid><orcidid>https://orcid.org/0000-0002-9037-7957</orcidid><orcidid>https://orcid.org/0000-0002-4727-3482</orcidid><orcidid>https://orcid.org/0000-0003-0943-8423</orcidid><orcidid>https://orcid.org/0000-0001-9115-6518</orcidid><orcidid>https://orcid.org/0000-0001-5345-2236</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2025-01, Vol.34 (1), p.n/a |
issn | 1466-822X 1466-8238 1466-822X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04839912v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Agricultural sciences Angiosperms Arbuscular mycorrhizas aridity Carbon cycle Carbon dioxide Carbon sequestration Climate change Climate effects Climate models Climate prediction Climatology Earth Sciences ectomycorrhiza Ectomycorrhizas Environmental impact Ferns Gymnosperms Life Sciences Nitrogen non‐mycorrhizal plants Nutrient cycles Nutrient dynamics Nutrient status Nutrients Phosphorus Photosynthesis Plants (botany) Representations Reproductive fitness Sciences of the Universe Shape effects Soil analysis soil nitrogen Soil nutrients soil phosphorus Soil study Soil temperature Soils temperature Vegetal Biology Vegetation Woodlands Woody plants |
title | Site‐Specific Nutrient Data Reveal the Importance of Soils in Driving the Mycorrhizal Make‐Up of Woody Vegetation Worldwide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90Specific%20Nutrient%20Data%20Reveal%20the%20Importance%20of%20Soils%20in%20Driving%20the%20Mycorrhizal%20Make%E2%80%90Up%20of%20Woody%20Vegetation%20Worldwide&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Hua,%20Xiaobin&rft.date=2025-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13936&rft_dat=%3Cproquest_hal_p%3E3160662040%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160662040&rft_id=info:pmid/&rfr_iscdi=true |