Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials

This paper presents the development of a multi-coil eddy current (EC) sensor that uses an axial rotating magnetic field for the measurement of electrical resistance to determine the electrical conductivity tensor of stratified carbon fiber reinforced polymer (CFRP) materials. The sensor consists of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NDT & E international : independent nondestructive testing and evaluation 2022-03, Vol.126, p.102589, Article 102589
Hauptverfasser: Lahrech, Ahmed Chaouki, Naidjate, Mohammed, Helifa, Bachir, Zaoui, Abdelhalim, Abdelhadi, Bachir, Lefkaier, Iben-Khaldoun, Feliachi, Mouloud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102589
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 126
creator Lahrech, Ahmed Chaouki
Naidjate, Mohammed
Helifa, Bachir
Zaoui, Abdelhalim
Abdelhadi, Bachir
Lefkaier, Iben-Khaldoun
Feliachi, Mouloud
description This paper presents the development of a multi-coil eddy current (EC) sensor that uses an axial rotating magnetic field for the measurement of electrical resistance to determine the electrical conductivity tensor of stratified carbon fiber reinforced polymer (CFRP) materials. The sensor consists of an identical planar racetrack multi-coil, excited by two-phase sinusoidal current sources that are 90° apart in phase to generate an axial rotating magnetic field and eliminate the need for mechanical rotation. Each sensor's coil's resistance variation is measured using a developed experimental prototype unit and computed using a 3D finite element method (FEM) based on the (A, V–A) formulation. The inverse problem technique that minimizes the difference between the calculated and measured resistances is then used to identify the electrical conductivity tensor components using the particle swarm optimization (PSO) algorithm. The comparison between the computed resistances and the measured ones shows an excellent concordance.
doi_str_mv 10.1016/j.ndteint.2021.102589
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04837872v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869521001882</els_id><sourcerecordid>S0963869521001882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5b2d1ddcf4b4776d127fe397ee5c55a29a330145254d508963d9d5ddb46f29e03</originalsourceid><addsrcrecordid>eNqFkc9qGzEQxkVpoa6TRyjo2sM6-rvaPRXj1knBkBCas5ClWUdmLQVJNk2eoo9cLTa59jDMMJrfN4w-hL5SsqCEtjf7RXAFfCgLRhitPSa7_gOa0U71DaVKfEQz0re86dpefkZfct4TQpjgaob-_oATjPHlAKHgOGATsPnjzYhTLKb4sMMHswtQvMWDh9Hhw3EsvrHRjxice8X2mNLEZgg5JjzUgBFsSfEdtM8mGVsg-bcqGcO0J5dU6yrp8Gr9-FC3TO9mzFfo01ATXF_yHD2tf_5e3TWb-9tfq-WmsVzw0sgtc9Q5O4itUKp1lKkBeK8ApJXSsN5wTqiQTAonSVevd72Tzm1FO7AeCJ-jb2fdZzPql-QPJr3qaLy-W2701COi46pT7ETrrDzP2hRzTjC8A5ToyQK91xcL9GSBPltQue9nDuohJw9JZ-shWHA-1S_SLvr_KPwDOXmVVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials</title><source>Elsevier ScienceDirect Journals</source><creator>Lahrech, Ahmed Chaouki ; Naidjate, Mohammed ; Helifa, Bachir ; Zaoui, Abdelhalim ; Abdelhadi, Bachir ; Lefkaier, Iben-Khaldoun ; Feliachi, Mouloud</creator><creatorcontrib>Lahrech, Ahmed Chaouki ; Naidjate, Mohammed ; Helifa, Bachir ; Zaoui, Abdelhalim ; Abdelhadi, Bachir ; Lefkaier, Iben-Khaldoun ; Feliachi, Mouloud</creatorcontrib><description>This paper presents the development of a multi-coil eddy current (EC) sensor that uses an axial rotating magnetic field for the measurement of electrical resistance to determine the electrical conductivity tensor of stratified carbon fiber reinforced polymer (CFRP) materials. The sensor consists of an identical planar racetrack multi-coil, excited by two-phase sinusoidal current sources that are 90° apart in phase to generate an axial rotating magnetic field and eliminate the need for mechanical rotation. Each sensor's coil's resistance variation is measured using a developed experimental prototype unit and computed using a 3D finite element method (FEM) based on the (A, V–A) formulation. The inverse problem technique that minimizes the difference between the calculated and measured resistances is then used to identify the electrical conductivity tensor components using the particle swarm optimization (PSO) algorithm. The comparison between the computed resistances and the measured ones shows an excellent concordance.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2021.102589</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon fiber reinforced polymer ; Eddy current non-destructive testing ; Electrical resistance measurement ; Engineering Sciences ; Finite element modeling ; Inverse problem</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2022-03, Vol.126, p.102589, Article 102589</ispartof><rights>2021 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5b2d1ddcf4b4776d127fe397ee5c55a29a330145254d508963d9d5ddb46f29e03</citedby><cites>FETCH-LOGICAL-c343t-5b2d1ddcf4b4776d127fe397ee5c55a29a330145254d508963d9d5ddb46f29e03</cites><orcidid>0000-0002-8447-5999 ; 0000-0001-9738-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ndteint.2021.102589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04837872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lahrech, Ahmed Chaouki</creatorcontrib><creatorcontrib>Naidjate, Mohammed</creatorcontrib><creatorcontrib>Helifa, Bachir</creatorcontrib><creatorcontrib>Zaoui, Abdelhalim</creatorcontrib><creatorcontrib>Abdelhadi, Bachir</creatorcontrib><creatorcontrib>Lefkaier, Iben-Khaldoun</creatorcontrib><creatorcontrib>Feliachi, Mouloud</creatorcontrib><title>Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>This paper presents the development of a multi-coil eddy current (EC) sensor that uses an axial rotating magnetic field for the measurement of electrical resistance to determine the electrical conductivity tensor of stratified carbon fiber reinforced polymer (CFRP) materials. The sensor consists of an identical planar racetrack multi-coil, excited by two-phase sinusoidal current sources that are 90° apart in phase to generate an axial rotating magnetic field and eliminate the need for mechanical rotation. Each sensor's coil's resistance variation is measured using a developed experimental prototype unit and computed using a 3D finite element method (FEM) based on the (A, V–A) formulation. The inverse problem technique that minimizes the difference between the calculated and measured resistances is then used to identify the electrical conductivity tensor components using the particle swarm optimization (PSO) algorithm. The comparison between the computed resistances and the measured ones shows an excellent concordance.</description><subject>Carbon fiber reinforced polymer</subject><subject>Eddy current non-destructive testing</subject><subject>Electrical resistance measurement</subject><subject>Engineering Sciences</subject><subject>Finite element modeling</subject><subject>Inverse problem</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9qGzEQxkVpoa6TRyjo2sM6-rvaPRXj1knBkBCas5ClWUdmLQVJNk2eoo9cLTa59jDMMJrfN4w-hL5SsqCEtjf7RXAFfCgLRhitPSa7_gOa0U71DaVKfEQz0re86dpefkZfct4TQpjgaob-_oATjPHlAKHgOGATsPnjzYhTLKb4sMMHswtQvMWDh9Hhw3EsvrHRjxice8X2mNLEZgg5JjzUgBFsSfEdtM8mGVsg-bcqGcO0J5dU6yrp8Gr9-FC3TO9mzFfo01ATXF_yHD2tf_5e3TWb-9tfq-WmsVzw0sgtc9Q5O4itUKp1lKkBeK8ApJXSsN5wTqiQTAonSVevd72Tzm1FO7AeCJ-jb2fdZzPql-QPJr3qaLy-W2701COi46pT7ETrrDzP2hRzTjC8A5ToyQK91xcL9GSBPltQue9nDuohJw9JZ-shWHA-1S_SLvr_KPwDOXmVVg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lahrech, Ahmed Chaouki</creator><creator>Naidjate, Mohammed</creator><creator>Helifa, Bachir</creator><creator>Zaoui, Abdelhalim</creator><creator>Abdelhadi, Bachir</creator><creator>Lefkaier, Iben-Khaldoun</creator><creator>Feliachi, Mouloud</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8447-5999</orcidid><orcidid>https://orcid.org/0000-0001-9738-364X</orcidid></search><sort><creationdate>202203</creationdate><title>Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials</title><author>Lahrech, Ahmed Chaouki ; Naidjate, Mohammed ; Helifa, Bachir ; Zaoui, Abdelhalim ; Abdelhadi, Bachir ; Lefkaier, Iben-Khaldoun ; Feliachi, Mouloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5b2d1ddcf4b4776d127fe397ee5c55a29a330145254d508963d9d5ddb46f29e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon fiber reinforced polymer</topic><topic>Eddy current non-destructive testing</topic><topic>Electrical resistance measurement</topic><topic>Engineering Sciences</topic><topic>Finite element modeling</topic><topic>Inverse problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahrech, Ahmed Chaouki</creatorcontrib><creatorcontrib>Naidjate, Mohammed</creatorcontrib><creatorcontrib>Helifa, Bachir</creatorcontrib><creatorcontrib>Zaoui, Abdelhalim</creatorcontrib><creatorcontrib>Abdelhadi, Bachir</creatorcontrib><creatorcontrib>Lefkaier, Iben-Khaldoun</creatorcontrib><creatorcontrib>Feliachi, Mouloud</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahrech, Ahmed Chaouki</au><au>Naidjate, Mohammed</au><au>Helifa, Bachir</au><au>Zaoui, Abdelhalim</au><au>Abdelhadi, Bachir</au><au>Lefkaier, Iben-Khaldoun</au><au>Feliachi, Mouloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2022-03</date><risdate>2022</risdate><volume>126</volume><spage>102589</spage><pages>102589-</pages><artnum>102589</artnum><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>This paper presents the development of a multi-coil eddy current (EC) sensor that uses an axial rotating magnetic field for the measurement of electrical resistance to determine the electrical conductivity tensor of stratified carbon fiber reinforced polymer (CFRP) materials. The sensor consists of an identical planar racetrack multi-coil, excited by two-phase sinusoidal current sources that are 90° apart in phase to generate an axial rotating magnetic field and eliminate the need for mechanical rotation. Each sensor's coil's resistance variation is measured using a developed experimental prototype unit and computed using a 3D finite element method (FEM) based on the (A, V–A) formulation. The inverse problem technique that minimizes the difference between the calculated and measured resistances is then used to identify the electrical conductivity tensor components using the particle swarm optimization (PSO) algorithm. The comparison between the computed resistances and the measured ones shows an excellent concordance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2021.102589</doi><orcidid>https://orcid.org/0000-0002-8447-5999</orcidid><orcidid>https://orcid.org/0000-0001-9738-364X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2022-03, Vol.126, p.102589, Article 102589
issn 0963-8695
1879-1174
language eng
recordid cdi_hal_primary_oai_HAL_hal_04837872v1
source Elsevier ScienceDirect Journals
subjects Carbon fiber reinforced polymer
Eddy current non-destructive testing
Electrical resistance measurement
Engineering Sciences
Finite element modeling
Inverse problem
title Development of an axial rotating magnetic field multi-coil eddy current sensor for electromagnetic characterization of stratified CFRP materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20axial%20rotating%20magnetic%20field%20multi-coil%20eddy%20current%20sensor%20for%20electromagnetic%20characterization%20of%20stratified%20CFRP%20materials&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Lahrech,%20Ahmed%20Chaouki&rft.date=2022-03&rft.volume=126&rft.spage=102589&rft.pages=102589-&rft.artnum=102589&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2021.102589&rft_dat=%3Celsevier_hal_p%3ES0963869521001882%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0963869521001882&rfr_iscdi=true