Rationality of Peskine varieties
We study the rationality of the Peskine sixfolds in P 9 . We prove the rationality of the Peskine sixfolds in the divisor D 3 , 3 , 10 inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor D 1 , 6 , 1...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2024-06, Vol.307 (2), Article 26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 307 |
creator | Benedetti, Vladimiro Faenzi, Daniele |
description | We study the rationality of the Peskine sixfolds in
P
9
. We prove the rationality of the Peskine sixfolds in the divisor
D
3
,
3
,
10
inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor
D
1
,
6
,
10
[(notation from Benedetti and Song (Divisors in the moduli space of Debarre-Voisin varieties,
http://arxiv.org/abs/2106.06859
, 2021)]. We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperkähler fourfold associated to the Peskine sixfold. |
doi_str_mv | 10.1007/s00209-024-03498-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04836759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050230701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-20047df7aef1c2b286bbf4b53fd47e4a949b64a4702747f76d5adf5bd9f5303a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFPBk4foJJk07XFZ1BUKiug5pNtEs67tmnQX9u3NWtGbp4GZ7_9hPkLOGVwxAHUdAThUFDhSEFiVVB6QjKHglJVcHJIs3SWVpcJjchLjEiAdFWYkfzKD7zuz8sMu713-aOO772y-NcHbwdt4So6cWUV79jMn5OX25nk2p_XD3f1sWtOFwHKgHABV65Sxji14w8uiaRw2UrgWlUVTYdUUaFABV6icKlppWiebtnJSgDBiQi7H3jez0uvgP0zY6d54PZ_Wer8DLEWhZLVlib0Y2XXoPzc2DnrZb0J6ImoBErgABXuKj9Qi9DEG635rGei9NT1a08ma_ramZQqJMRQT3L3a8Ff9T-oLo_RtEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050230701</pqid></control><display><type>article</type><title>Rationality of Peskine varieties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Benedetti, Vladimiro ; Faenzi, Daniele</creator><creatorcontrib>Benedetti, Vladimiro ; Faenzi, Daniele</creatorcontrib><description>We study the rationality of the Peskine sixfolds in
P
9
. We prove the rationality of the Peskine sixfolds in the divisor
D
3
,
3
,
10
inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor
D
1
,
6
,
10
[(notation from Benedetti and Song (Divisors in the moduli space of Debarre-Voisin varieties,
http://arxiv.org/abs/2106.06859
, 2021)]. We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperkähler fourfold associated to the Peskine sixfold.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-024-03498-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2024-06, Vol.307 (2), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-20047df7aef1c2b286bbf4b53fd47e4a949b64a4702747f76d5adf5bd9f5303a3</cites><orcidid>0000-0001-7113-1639 ; 0000-0002-4411-0952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-024-03498-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-024-03498-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04836759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benedetti, Vladimiro</creatorcontrib><creatorcontrib>Faenzi, Daniele</creatorcontrib><title>Rationality of Peskine varieties</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study the rationality of the Peskine sixfolds in
P
9
. We prove the rationality of the Peskine sixfolds in the divisor
D
3
,
3
,
10
inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor
D
1
,
6
,
10
[(notation from Benedetti and Song (Divisors in the moduli space of Debarre-Voisin varieties,
http://arxiv.org/abs/2106.06859
, 2021)]. We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperkähler fourfold associated to the Peskine sixfold.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFPBk4foJJk07XFZ1BUKiug5pNtEs67tmnQX9u3NWtGbp4GZ7_9hPkLOGVwxAHUdAThUFDhSEFiVVB6QjKHglJVcHJIs3SWVpcJjchLjEiAdFWYkfzKD7zuz8sMu713-aOO772y-NcHbwdt4So6cWUV79jMn5OX25nk2p_XD3f1sWtOFwHKgHABV65Sxji14w8uiaRw2UrgWlUVTYdUUaFABV6icKlppWiebtnJSgDBiQi7H3jez0uvgP0zY6d54PZ_Wer8DLEWhZLVlib0Y2XXoPzc2DnrZb0J6ImoBErgABXuKj9Qi9DEG635rGei9NT1a08ma_ramZQqJMRQT3L3a8Ff9T-oLo_RtEA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Benedetti, Vladimiro</creator><creator>Faenzi, Daniele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7113-1639</orcidid><orcidid>https://orcid.org/0000-0002-4411-0952</orcidid></search><sort><creationdate>20240601</creationdate><title>Rationality of Peskine varieties</title><author>Benedetti, Vladimiro ; Faenzi, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-20047df7aef1c2b286bbf4b53fd47e4a949b64a4702747f76d5adf5bd9f5303a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetti, Vladimiro</creatorcontrib><creatorcontrib>Faenzi, Daniele</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetti, Vladimiro</au><au>Faenzi, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rationality of Peskine varieties</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>307</volume><issue>2</issue><artnum>26</artnum><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study the rationality of the Peskine sixfolds in
P
9
. We prove the rationality of the Peskine sixfolds in the divisor
D
3
,
3
,
10
inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor
D
1
,
6
,
10
[(notation from Benedetti and Song (Divisors in the moduli space of Debarre-Voisin varieties,
http://arxiv.org/abs/2106.06859
, 2021)]. We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperkähler fourfold associated to the Peskine sixfold.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-024-03498-5</doi><orcidid>https://orcid.org/0000-0001-7113-1639</orcidid><orcidid>https://orcid.org/0000-0002-4411-0952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2024-06, Vol.307 (2), Article 26 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04836759v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | Rationality of Peskine varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rationality%20of%20Peskine%20varieties&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Benedetti,%20Vladimiro&rft.date=2024-06-01&rft.volume=307&rft.issue=2&rft.artnum=26&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-024-03498-5&rft_dat=%3Cproquest_hal_p%3E3050230701%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050230701&rft_id=info:pmid/&rfr_iscdi=true |