Towards logical foundations for probabilistic computation
The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a f...
Gespeichert in:
Veröffentlicht in: | Annals of pure and applied logic 2024-10, Vol.175 (9), p.103341, Article 103341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 103341 |
container_title | Annals of pure and applied logic |
container_volume | 175 |
creator | Antonelli, Melissa Dal Lago, Ugo Pistone, Paolo |
description | The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs. |
doi_str_mv | 10.1016/j.apal.2023.103341 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04835866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168007223000982</els_id><sourcerecordid>S0168007223000982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</originalsourceid><addsrcrecordid>eNp9kDtPwzAQxz2ARCl8AaasDCl-xI9ILFUFFKkSS5mt8yPgKq0jOy3i25M0iJHpTv_HSfdD6I7gBcFEPOwW0EG7oJiyQWCsIhdoNhiqxFjSK3Sd8w5jzCvJZqjexi9ILhdt_AgW2qKJx4ODPsRDHvZUdCkaMKENuQ-2sHHfHfuzfYMuG2izv_2dc_T-_LRdrcvN28vrarkpLZOqL6EB51wtjalZRWspuKWyMr4xzOJaKMIbx6yXWEJjhDJKeE4ocKuowQw4m6P76e4ntLpLYQ_pW0cIer3c6FHDlWJcCXEiQ5ZOWZtizsk3fwWC9QhH7_QIR49w9ARnKD1OJT98cQo-6WyDP1jvQvK21y6G_-o_1i9vpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards logical foundations for probabilistic computation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</creator><creatorcontrib>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</creatorcontrib><description>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/j.apal.2023.103341</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Counting complexity ; Counting quantifiers ; Mathematical Software ; Probabilistic computation ; Propositional logic ; Typed λ-calculi</subject><ispartof>Annals of pure and applied logic, 2024-10, Vol.175 (9), p.103341, Article 103341</ispartof><rights>2023 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</citedby><cites>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</cites><orcidid>0000-0001-9200-070X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apal.2023.103341$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04835866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonelli, Melissa</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Pistone, Paolo</creatorcontrib><title>Towards logical foundations for probabilistic computation</title><title>Annals of pure and applied logic</title><description>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</description><subject>Computer Science</subject><subject>Counting complexity</subject><subject>Counting quantifiers</subject><subject>Mathematical Software</subject><subject>Probabilistic computation</subject><subject>Propositional logic</subject><subject>Typed λ-calculi</subject><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQxz2ARCl8AaasDCl-xI9ILFUFFKkSS5mt8yPgKq0jOy3i25M0iJHpTv_HSfdD6I7gBcFEPOwW0EG7oJiyQWCsIhdoNhiqxFjSK3Sd8w5jzCvJZqjexi9ILhdt_AgW2qKJx4ODPsRDHvZUdCkaMKENuQ-2sHHfHfuzfYMuG2izv_2dc_T-_LRdrcvN28vrarkpLZOqL6EB51wtjalZRWspuKWyMr4xzOJaKMIbx6yXWEJjhDJKeE4ocKuowQw4m6P76e4ntLpLYQ_pW0cIer3c6FHDlWJcCXEiQ5ZOWZtizsk3fwWC9QhH7_QIR49w9ARnKD1OJT98cQo-6WyDP1jvQvK21y6G_-o_1i9vpg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Antonelli, Melissa</creator><creator>Dal Lago, Ugo</creator><creator>Pistone, Paolo</creator><general>Elsevier B.V</general><general>Elsevier Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid></search><sort><creationdate>20241001</creationdate><title>Towards logical foundations for probabilistic computation</title><author>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Counting complexity</topic><topic>Counting quantifiers</topic><topic>Mathematical Software</topic><topic>Probabilistic computation</topic><topic>Propositional logic</topic><topic>Typed λ-calculi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonelli, Melissa</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Pistone, Paolo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonelli, Melissa</au><au>Dal Lago, Ugo</au><au>Pistone, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards logical foundations for probabilistic computation</atitle><jtitle>Annals of pure and applied logic</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>175</volume><issue>9</issue><spage>103341</spage><pages>103341-</pages><artnum>103341</artnum><issn>0168-0072</issn><abstract>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apal.2023.103341</doi><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-0072 |
ispartof | Annals of pure and applied logic, 2024-10, Vol.175 (9), p.103341, Article 103341 |
issn | 0168-0072 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04835866v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computer Science Counting complexity Counting quantifiers Mathematical Software Probabilistic computation Propositional logic Typed λ-calculi |
title | Towards logical foundations for probabilistic computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20logical%20foundations%20for%20probabilistic%20computation&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Antonelli,%20Melissa&rft.date=2024-10-01&rft.volume=175&rft.issue=9&rft.spage=103341&rft.pages=103341-&rft.artnum=103341&rft.issn=0168-0072&rft_id=info:doi/10.1016/j.apal.2023.103341&rft_dat=%3Celsevier_hal_p%3ES0168007223000982%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168007223000982&rfr_iscdi=true |