Towards logical foundations for probabilistic computation

The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of pure and applied logic 2024-10, Vol.175 (9), p.103341, Article 103341
Hauptverfasser: Antonelli, Melissa, Dal Lago, Ugo, Pistone, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 103341
container_title Annals of pure and applied logic
container_volume 175
creator Antonelli, Melissa
Dal Lago, Ugo
Pistone, Paolo
description The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.
doi_str_mv 10.1016/j.apal.2023.103341
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04835866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168007223000982</els_id><sourcerecordid>S0168007223000982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</originalsourceid><addsrcrecordid>eNp9kDtPwzAQxz2ARCl8AaasDCl-xI9ILFUFFKkSS5mt8yPgKq0jOy3i25M0iJHpTv_HSfdD6I7gBcFEPOwW0EG7oJiyQWCsIhdoNhiqxFjSK3Sd8w5jzCvJZqjexi9ILhdt_AgW2qKJx4ODPsRDHvZUdCkaMKENuQ-2sHHfHfuzfYMuG2izv_2dc_T-_LRdrcvN28vrarkpLZOqL6EB51wtjalZRWspuKWyMr4xzOJaKMIbx6yXWEJjhDJKeE4ocKuowQw4m6P76e4ntLpLYQ_pW0cIer3c6FHDlWJcCXEiQ5ZOWZtizsk3fwWC9QhH7_QIR49w9ARnKD1OJT98cQo-6WyDP1jvQvK21y6G_-o_1i9vpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards logical foundations for probabilistic computation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</creator><creatorcontrib>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</creatorcontrib><description>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</description><identifier>ISSN: 0168-0072</identifier><identifier>DOI: 10.1016/j.apal.2023.103341</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Counting complexity ; Counting quantifiers ; Mathematical Software ; Probabilistic computation ; Propositional logic ; Typed λ-calculi</subject><ispartof>Annals of pure and applied logic, 2024-10, Vol.175 (9), p.103341, Article 103341</ispartof><rights>2023 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</citedby><cites>FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</cites><orcidid>0000-0001-9200-070X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apal.2023.103341$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04835866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonelli, Melissa</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Pistone, Paolo</creatorcontrib><title>Towards logical foundations for probabilistic computation</title><title>Annals of pure and applied logic</title><description>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</description><subject>Computer Science</subject><subject>Counting complexity</subject><subject>Counting quantifiers</subject><subject>Mathematical Software</subject><subject>Probabilistic computation</subject><subject>Propositional logic</subject><subject>Typed λ-calculi</subject><issn>0168-0072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQxz2ARCl8AaasDCl-xI9ILFUFFKkSS5mt8yPgKq0jOy3i25M0iJHpTv_HSfdD6I7gBcFEPOwW0EG7oJiyQWCsIhdoNhiqxFjSK3Sd8w5jzCvJZqjexi9ILhdt_AgW2qKJx4ODPsRDHvZUdCkaMKENuQ-2sHHfHfuzfYMuG2izv_2dc_T-_LRdrcvN28vrarkpLZOqL6EB51wtjalZRWspuKWyMr4xzOJaKMIbx6yXWEJjhDJKeE4ocKuowQw4m6P76e4ntLpLYQ_pW0cIer3c6FHDlWJcCXEiQ5ZOWZtizsk3fwWC9QhH7_QIR49w9ARnKD1OJT98cQo-6WyDP1jvQvK21y6G_-o_1i9vpg</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Antonelli, Melissa</creator><creator>Dal Lago, Ugo</creator><creator>Pistone, Paolo</creator><general>Elsevier B.V</general><general>Elsevier Masson</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid></search><sort><creationdate>20241001</creationdate><title>Towards logical foundations for probabilistic computation</title><author>Antonelli, Melissa ; Dal Lago, Ugo ; Pistone, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-afaddd97bb93429765c274befb3c096815fd3ce707afb68b86e512a5c82b03a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><topic>Counting complexity</topic><topic>Counting quantifiers</topic><topic>Mathematical Software</topic><topic>Probabilistic computation</topic><topic>Propositional logic</topic><topic>Typed λ-calculi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonelli, Melissa</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Pistone, Paolo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of pure and applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonelli, Melissa</au><au>Dal Lago, Ugo</au><au>Pistone, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards logical foundations for probabilistic computation</atitle><jtitle>Annals of pure and applied logic</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>175</volume><issue>9</issue><spage>103341</spage><pages>103341-</pages><artnum>103341</artnum><issn>0168-0072</issn><abstract>The overall purpose of the present work is to lay the foundations for a new approach to bridge logic and probabilistic computation. To this aim we introduce extensions of classical and intuitionistic propositional logic with counting quantifiers, that is, quantifiers that measure to which extent a formula is true. The resulting systems, called cCPL and iCPL, respectively, admit a natural semantics, based on the Borel σ-algebra of the Cantor space, together with a sound and complete proof system. Our main results consist in relating cCPL and iCPL with some central concepts in the study of probabilistic computation. On the one hand, the validity of cCPL-formulae in prenex form characterizes the corresponding level of Wagner's hierarchy of counting complexity classes, closely related to probabilistic complexity. On the other hand, proofs in iCPL correspond, in the sense of Curry and Howard, to typing derivations for a randomized extension of the λ-calculus, so that counting quantifiers reveal the probability of termination of the underlying probabilistic programs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apal.2023.103341</doi><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-0072
ispartof Annals of pure and applied logic, 2024-10, Vol.175 (9), p.103341, Article 103341
issn 0168-0072
language eng
recordid cdi_hal_primary_oai_HAL_hal_04835866v1
source Elsevier ScienceDirect Journals Complete
subjects Computer Science
Counting complexity
Counting quantifiers
Mathematical Software
Probabilistic computation
Propositional logic
Typed λ-calculi
title Towards logical foundations for probabilistic computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20logical%20foundations%20for%20probabilistic%20computation&rft.jtitle=Annals%20of%20pure%20and%20applied%20logic&rft.au=Antonelli,%20Melissa&rft.date=2024-10-01&rft.volume=175&rft.issue=9&rft.spage=103341&rft.pages=103341-&rft.artnum=103341&rft.issn=0168-0072&rft_id=info:doi/10.1016/j.apal.2023.103341&rft_dat=%3Celsevier_hal_p%3ES0168007223000982%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168007223000982&rfr_iscdi=true