Sentinel-1 soil moisture at 1 km resolution: a validation study
This study presents an assessment of a pre-operational soil moisture product at 1 km resolution derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing the first space component of the Copernicus program. The product consists of an estimate of surface so...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2021-09, Vol.263, p.112554, Article 112554 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 112554 |
container_title | Remote sensing of environment |
container_volume | 263 |
creator | Balenzano, Anna Mattia, Francesco Satalino, Giuseppe Lovergine, Francesco P. Palmisano, Davide Peng, Jian Marzahn, Philip Wegmüller, Urs Cartus, Oliver Dąbrowska-Zielińska, Katarzyna Musial, Jan P. Davidson, Malcolm W.J. Pauwels, Valentijn R.N. Cosh, Michael H. McNairn, Heather Johnson, Joel T. Walker, Jeffrey P. Yueh, Simon H. Entekhabi, Dara Kerr, Yann H. Jackson, Thomas J. |
description | This study presents an assessment of a pre-operational soil moisture product at 1 km resolution derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing the first space component of the Copernicus program. The product consists of an estimate of surface soil volumetric water content Θ [m3/m3] and its uncertainty [m3/m3], both at 1 km. The retrieval algorithm relies on a time series based Short Term Change Detection (STCD) approach, taking advantage of the frequent revisit of the S-1 constellation that performs C-band Synthetic Aperture Radar (SAR) imaging. The performance of the S-1 Θ product is estimated through a direct comparison between 1068 S-1 Θ images against in situ Θ measurements acquired by 167 ground stations located in Europe, America and Australia, over 4 years between January 2015 and December 2020, depending on the site. The paper develops a method to estimate the spatial representativeness error (SRE) that arises from the mismatch between the S-1 Θ retrieved at 1 km resolution and the in situ point-scale Θ observations. The impact of SRE on standard validation metrics, i.e., root mean square error (RMSE), Pearson correlation (R) and linear regression, is quantified and experimentally assessed using S-1 and ground Θ data collected over a dense hydrologic network (4 − 5 stations/km2) located in the Apulian Tavoliere (Southern Italy). Results show that for the dense hydrological network the RMSE and correlation are ~0.06 m3/m3 and 0.71, respectively, whereas for the sparse hydrological networks, i.e., 1 station/km2, the SRE increases the RMSE by ~0.02 m3/m3 (70% Confidence Level). Globally, the S-1 Θ product is characterized by an intrinsic (i.e., with SRE removed) RMSE of ~0.07 m3/m3 over the Θ range [0.03, 0.60] m3/m3 and R of 0.54. A breakdown of the RMSE per dry, medium and wet Θ ranges is also derived and its implications for setting realistic requirements for SAR-based Θ retrieval are discussed together with recommendations for the density of in situ Θ observations.
•A pre-operational 1 km soil moisture product (Θ) from S-1 is developed.•The co-registered Θ uncertainty layer at 1 km resolution is also provided.•The S-1 Θ product validation according to CEOS WGCV is illustrated.•The impact of the spatial representativeness error on metrics is quantified.•Requirements for validating high-resolution Θ products are identified. |
doi_str_mv | 10.1016/j.rse.2021.112554 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04829319v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425721002741</els_id><sourcerecordid>2559474892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-acb73c0ad94d7330dffb0b59755aafa06815f11d17a26f097d890f860bcc6d883</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeCJw-tM23aJHpRFnWFBQ_qOaRJilm7zZp0F_ZtfBafzC4Vj56GGb5_mPkIOUfIELC6WmYh2iyHHDPEvCzpAZkgZyIFBvSQTAAKmtK8ZMfkJMYlAJac4YTcvtiud51tU0yid22y8i72m2AT1Sf4_fWxSoKNvt30znfXiUq2qnVG7btk4MzulBw1qo327LdOydvD_etsni6eH59md4tUU8j7VOmaFRqUEdSwogDTNDXUpWBlqVSjoOJYNogGmcqrBgQzXEDDK6i1rgznxZRcjnvfVSvXwa1U2EmvnJzfLeR-BpTnokCxxYG9GNl18J8bG3u59JvQDefJQY2gjHKRDxSOlA4-xmCbv7UIci9VLuUgVe6lylHqkLkZM3Z4detskFE722lrXLC6l8a7f9I_3ix-CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559474892</pqid></control><display><type>article</type><title>Sentinel-1 soil moisture at 1 km resolution: a validation study</title><source>Access via ScienceDirect (Elsevier)</source><creator>Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Lovergine, Francesco P. ; Palmisano, Davide ; Peng, Jian ; Marzahn, Philip ; Wegmüller, Urs ; Cartus, Oliver ; Dąbrowska-Zielińska, Katarzyna ; Musial, Jan P. ; Davidson, Malcolm W.J. ; Pauwels, Valentijn R.N. ; Cosh, Michael H. ; McNairn, Heather ; Johnson, Joel T. ; Walker, Jeffrey P. ; Yueh, Simon H. ; Entekhabi, Dara ; Kerr, Yann H. ; Jackson, Thomas J.</creator><creatorcontrib>Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Lovergine, Francesco P. ; Palmisano, Davide ; Peng, Jian ; Marzahn, Philip ; Wegmüller, Urs ; Cartus, Oliver ; Dąbrowska-Zielińska, Katarzyna ; Musial, Jan P. ; Davidson, Malcolm W.J. ; Pauwels, Valentijn R.N. ; Cosh, Michael H. ; McNairn, Heather ; Johnson, Joel T. ; Walker, Jeffrey P. ; Yueh, Simon H. ; Entekhabi, Dara ; Kerr, Yann H. ; Jackson, Thomas J.</creatorcontrib><description>This study presents an assessment of a pre-operational soil moisture product at 1 km resolution derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing the first space component of the Copernicus program. The product consists of an estimate of surface soil volumetric water content Θ [m3/m3] and its uncertainty [m3/m3], both at 1 km. The retrieval algorithm relies on a time series based Short Term Change Detection (STCD) approach, taking advantage of the frequent revisit of the S-1 constellation that performs C-band Synthetic Aperture Radar (SAR) imaging. The performance of the S-1 Θ product is estimated through a direct comparison between 1068 S-1 Θ images against in situ Θ measurements acquired by 167 ground stations located in Europe, America and Australia, over 4 years between January 2015 and December 2020, depending on the site. The paper develops a method to estimate the spatial representativeness error (SRE) that arises from the mismatch between the S-1 Θ retrieved at 1 km resolution and the in situ point-scale Θ observations. The impact of SRE on standard validation metrics, i.e., root mean square error (RMSE), Pearson correlation (R) and linear regression, is quantified and experimentally assessed using S-1 and ground Θ data collected over a dense hydrologic network (4 − 5 stations/km2) located in the Apulian Tavoliere (Southern Italy). Results show that for the dense hydrological network the RMSE and correlation are ~0.06 m3/m3 and 0.71, respectively, whereas for the sparse hydrological networks, i.e., 1 station/km2, the SRE increases the RMSE by ~0.02 m3/m3 (70% Confidence Level). Globally, the S-1 Θ product is characterized by an intrinsic (i.e., with SRE removed) RMSE of ~0.07 m3/m3 over the Θ range [0.03, 0.60] m3/m3 and R of 0.54. A breakdown of the RMSE per dry, medium and wet Θ ranges is also derived and its implications for setting realistic requirements for SAR-based Θ retrieval are discussed together with recommendations for the density of in situ Θ observations.
•A pre-operational 1 km soil moisture product (Θ) from S-1 is developed.•The co-registered Θ uncertainty layer at 1 km resolution is also provided.•The S-1 Θ product validation according to CEOS WGCV is illustrated.•The impact of the spatial representativeness error on metrics is quantified.•Requirements for validating high-resolution Θ products are identified.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2021.112554</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Algorithms ; C band ; Confidence intervals ; Correlation ; Data acquisition ; Environmental Sciences ; Ground stations ; High resolution ; Hydrologic networks ; Hydrology ; Image acquisition ; Moisture content ; Radar ; Radar data ; Radar imaging ; Retrieval ; Root-mean-square errors ; Satellite data ; Satellites ; Sentinel-1 ; Soil moisture ; Soil surfaces ; Soil water ; Spatial representativeness error (SRE) ; Statistical analysis ; Synthetic aperture radar ; Synthetic Aperture Radar (SAR) ; Validation ; Water content</subject><ispartof>Remote sensing of environment, 2021-09, Vol.263, p.112554, Article 112554</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-acb73c0ad94d7330dffb0b59755aafa06815f11d17a26f097d890f860bcc6d883</citedby><cites>FETCH-LOGICAL-c402t-acb73c0ad94d7330dffb0b59755aafa06815f11d17a26f097d890f860bcc6d883</cites><orcidid>0000-0001-6352-1717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2021.112554$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04829319$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Lovergine, Francesco P.</creatorcontrib><creatorcontrib>Palmisano, Davide</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Marzahn, Philip</creatorcontrib><creatorcontrib>Wegmüller, Urs</creatorcontrib><creatorcontrib>Cartus, Oliver</creatorcontrib><creatorcontrib>Dąbrowska-Zielińska, Katarzyna</creatorcontrib><creatorcontrib>Musial, Jan P.</creatorcontrib><creatorcontrib>Davidson, Malcolm W.J.</creatorcontrib><creatorcontrib>Pauwels, Valentijn R.N.</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>McNairn, Heather</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><creatorcontrib>Yueh, Simon H.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Kerr, Yann H.</creatorcontrib><creatorcontrib>Jackson, Thomas J.</creatorcontrib><title>Sentinel-1 soil moisture at 1 km resolution: a validation study</title><title>Remote sensing of environment</title><description>This study presents an assessment of a pre-operational soil moisture product at 1 km resolution derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing the first space component of the Copernicus program. The product consists of an estimate of surface soil volumetric water content Θ [m3/m3] and its uncertainty [m3/m3], both at 1 km. The retrieval algorithm relies on a time series based Short Term Change Detection (STCD) approach, taking advantage of the frequent revisit of the S-1 constellation that performs C-band Synthetic Aperture Radar (SAR) imaging. The performance of the S-1 Θ product is estimated through a direct comparison between 1068 S-1 Θ images against in situ Θ measurements acquired by 167 ground stations located in Europe, America and Australia, over 4 years between January 2015 and December 2020, depending on the site. The paper develops a method to estimate the spatial representativeness error (SRE) that arises from the mismatch between the S-1 Θ retrieved at 1 km resolution and the in situ point-scale Θ observations. The impact of SRE on standard validation metrics, i.e., root mean square error (RMSE), Pearson correlation (R) and linear regression, is quantified and experimentally assessed using S-1 and ground Θ data collected over a dense hydrologic network (4 − 5 stations/km2) located in the Apulian Tavoliere (Southern Italy). Results show that for the dense hydrological network the RMSE and correlation are ~0.06 m3/m3 and 0.71, respectively, whereas for the sparse hydrological networks, i.e., 1 station/km2, the SRE increases the RMSE by ~0.02 m3/m3 (70% Confidence Level). Globally, the S-1 Θ product is characterized by an intrinsic (i.e., with SRE removed) RMSE of ~0.07 m3/m3 over the Θ range [0.03, 0.60] m3/m3 and R of 0.54. A breakdown of the RMSE per dry, medium and wet Θ ranges is also derived and its implications for setting realistic requirements for SAR-based Θ retrieval are discussed together with recommendations for the density of in situ Θ observations.
•A pre-operational 1 km soil moisture product (Θ) from S-1 is developed.•The co-registered Θ uncertainty layer at 1 km resolution is also provided.•The S-1 Θ product validation according to CEOS WGCV is illustrated.•The impact of the spatial representativeness error on metrics is quantified.•Requirements for validating high-resolution Θ products are identified.</description><subject>Algorithms</subject><subject>C band</subject><subject>Confidence intervals</subject><subject>Correlation</subject><subject>Data acquisition</subject><subject>Environmental Sciences</subject><subject>Ground stations</subject><subject>High resolution</subject><subject>Hydrologic networks</subject><subject>Hydrology</subject><subject>Image acquisition</subject><subject>Moisture content</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Retrieval</subject><subject>Root-mean-square errors</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sentinel-1</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Soil water</subject><subject>Spatial representativeness error (SRE)</subject><subject>Statistical analysis</subject><subject>Synthetic aperture radar</subject><subject>Synthetic Aperture Radar (SAR)</subject><subject>Validation</subject><subject>Water content</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeCJw-tM23aJHpRFnWFBQ_qOaRJilm7zZp0F_ZtfBafzC4Vj56GGb5_mPkIOUfIELC6WmYh2iyHHDPEvCzpAZkgZyIFBvSQTAAKmtK8ZMfkJMYlAJac4YTcvtiud51tU0yid22y8i72m2AT1Sf4_fWxSoKNvt30znfXiUq2qnVG7btk4MzulBw1qo327LdOydvD_etsni6eH59md4tUU8j7VOmaFRqUEdSwogDTNDXUpWBlqVSjoOJYNogGmcqrBgQzXEDDK6i1rgznxZRcjnvfVSvXwa1U2EmvnJzfLeR-BpTnokCxxYG9GNl18J8bG3u59JvQDefJQY2gjHKRDxSOlA4-xmCbv7UIci9VLuUgVe6lylHqkLkZM3Z4detskFE722lrXLC6l8a7f9I_3ix-CA</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Balenzano, Anna</creator><creator>Mattia, Francesco</creator><creator>Satalino, Giuseppe</creator><creator>Lovergine, Francesco P.</creator><creator>Palmisano, Davide</creator><creator>Peng, Jian</creator><creator>Marzahn, Philip</creator><creator>Wegmüller, Urs</creator><creator>Cartus, Oliver</creator><creator>Dąbrowska-Zielińska, Katarzyna</creator><creator>Musial, Jan P.</creator><creator>Davidson, Malcolm W.J.</creator><creator>Pauwels, Valentijn R.N.</creator><creator>Cosh, Michael H.</creator><creator>McNairn, Heather</creator><creator>Johnson, Joel T.</creator><creator>Walker, Jeffrey P.</creator><creator>Yueh, Simon H.</creator><creator>Entekhabi, Dara</creator><creator>Kerr, Yann H.</creator><creator>Jackson, Thomas J.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6352-1717</orcidid></search><sort><creationdate>20210915</creationdate><title>Sentinel-1 soil moisture at 1 km resolution: a validation study</title><author>Balenzano, Anna ; Mattia, Francesco ; Satalino, Giuseppe ; Lovergine, Francesco P. ; Palmisano, Davide ; Peng, Jian ; Marzahn, Philip ; Wegmüller, Urs ; Cartus, Oliver ; Dąbrowska-Zielińska, Katarzyna ; Musial, Jan P. ; Davidson, Malcolm W.J. ; Pauwels, Valentijn R.N. ; Cosh, Michael H. ; McNairn, Heather ; Johnson, Joel T. ; Walker, Jeffrey P. ; Yueh, Simon H. ; Entekhabi, Dara ; Kerr, Yann H. ; Jackson, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-acb73c0ad94d7330dffb0b59755aafa06815f11d17a26f097d890f860bcc6d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>C band</topic><topic>Confidence intervals</topic><topic>Correlation</topic><topic>Data acquisition</topic><topic>Environmental Sciences</topic><topic>Ground stations</topic><topic>High resolution</topic><topic>Hydrologic networks</topic><topic>Hydrology</topic><topic>Image acquisition</topic><topic>Moisture content</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Retrieval</topic><topic>Root-mean-square errors</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sentinel-1</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Soil water</topic><topic>Spatial representativeness error (SRE)</topic><topic>Statistical analysis</topic><topic>Synthetic aperture radar</topic><topic>Synthetic Aperture Radar (SAR)</topic><topic>Validation</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balenzano, Anna</creatorcontrib><creatorcontrib>Mattia, Francesco</creatorcontrib><creatorcontrib>Satalino, Giuseppe</creatorcontrib><creatorcontrib>Lovergine, Francesco P.</creatorcontrib><creatorcontrib>Palmisano, Davide</creatorcontrib><creatorcontrib>Peng, Jian</creatorcontrib><creatorcontrib>Marzahn, Philip</creatorcontrib><creatorcontrib>Wegmüller, Urs</creatorcontrib><creatorcontrib>Cartus, Oliver</creatorcontrib><creatorcontrib>Dąbrowska-Zielińska, Katarzyna</creatorcontrib><creatorcontrib>Musial, Jan P.</creatorcontrib><creatorcontrib>Davidson, Malcolm W.J.</creatorcontrib><creatorcontrib>Pauwels, Valentijn R.N.</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>McNairn, Heather</creatorcontrib><creatorcontrib>Johnson, Joel T.</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><creatorcontrib>Yueh, Simon H.</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Kerr, Yann H.</creatorcontrib><creatorcontrib>Jackson, Thomas J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balenzano, Anna</au><au>Mattia, Francesco</au><au>Satalino, Giuseppe</au><au>Lovergine, Francesco P.</au><au>Palmisano, Davide</au><au>Peng, Jian</au><au>Marzahn, Philip</au><au>Wegmüller, Urs</au><au>Cartus, Oliver</au><au>Dąbrowska-Zielińska, Katarzyna</au><au>Musial, Jan P.</au><au>Davidson, Malcolm W.J.</au><au>Pauwels, Valentijn R.N.</au><au>Cosh, Michael H.</au><au>McNairn, Heather</au><au>Johnson, Joel T.</au><au>Walker, Jeffrey P.</au><au>Yueh, Simon H.</au><au>Entekhabi, Dara</au><au>Kerr, Yann H.</au><au>Jackson, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentinel-1 soil moisture at 1 km resolution: a validation study</atitle><jtitle>Remote sensing of environment</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>263</volume><spage>112554</spage><pages>112554-</pages><artnum>112554</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>This study presents an assessment of a pre-operational soil moisture product at 1 km resolution derived from satellite data acquired by the European Radar Observatory Sentinel-1 (S-1), representing the first space component of the Copernicus program. The product consists of an estimate of surface soil volumetric water content Θ [m3/m3] and its uncertainty [m3/m3], both at 1 km. The retrieval algorithm relies on a time series based Short Term Change Detection (STCD) approach, taking advantage of the frequent revisit of the S-1 constellation that performs C-band Synthetic Aperture Radar (SAR) imaging. The performance of the S-1 Θ product is estimated through a direct comparison between 1068 S-1 Θ images against in situ Θ measurements acquired by 167 ground stations located in Europe, America and Australia, over 4 years between January 2015 and December 2020, depending on the site. The paper develops a method to estimate the spatial representativeness error (SRE) that arises from the mismatch between the S-1 Θ retrieved at 1 km resolution and the in situ point-scale Θ observations. The impact of SRE on standard validation metrics, i.e., root mean square error (RMSE), Pearson correlation (R) and linear regression, is quantified and experimentally assessed using S-1 and ground Θ data collected over a dense hydrologic network (4 − 5 stations/km2) located in the Apulian Tavoliere (Southern Italy). Results show that for the dense hydrological network the RMSE and correlation are ~0.06 m3/m3 and 0.71, respectively, whereas for the sparse hydrological networks, i.e., 1 station/km2, the SRE increases the RMSE by ~0.02 m3/m3 (70% Confidence Level). Globally, the S-1 Θ product is characterized by an intrinsic (i.e., with SRE removed) RMSE of ~0.07 m3/m3 over the Θ range [0.03, 0.60] m3/m3 and R of 0.54. A breakdown of the RMSE per dry, medium and wet Θ ranges is also derived and its implications for setting realistic requirements for SAR-based Θ retrieval are discussed together with recommendations for the density of in situ Θ observations.
•A pre-operational 1 km soil moisture product (Θ) from S-1 is developed.•The co-registered Θ uncertainty layer at 1 km resolution is also provided.•The S-1 Θ product validation according to CEOS WGCV is illustrated.•The impact of the spatial representativeness error on metrics is quantified.•Requirements for validating high-resolution Θ products are identified.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2021.112554</doi><orcidid>https://orcid.org/0000-0001-6352-1717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2021-09, Vol.263, p.112554, Article 112554 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04829319v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms C band Confidence intervals Correlation Data acquisition Environmental Sciences Ground stations High resolution Hydrologic networks Hydrology Image acquisition Moisture content Radar Radar data Radar imaging Retrieval Root-mean-square errors Satellite data Satellites Sentinel-1 Soil moisture Soil surfaces Soil water Spatial representativeness error (SRE) Statistical analysis Synthetic aperture radar Synthetic Aperture Radar (SAR) Validation Water content |
title | Sentinel-1 soil moisture at 1 km resolution: a validation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentinel-1%20soil%20moisture%20at%201%C2%A0km%20resolution:%20a%20validation%20study&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Balenzano,%20Anna&rft.date=2021-09-15&rft.volume=263&rft.spage=112554&rft.pages=112554-&rft.artnum=112554&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2021.112554&rft_dat=%3Cproquest_hal_p%3E2559474892%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559474892&rft_id=info:pmid/&rft_els_id=S0034425721002741&rfr_iscdi=true |