Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites

We report on the presence of the serpentine-type antigorite in abyssal-serpentinized peridotite. At mid-ocean spreading ridges, antigorite crystallizes under retrograde metamorphic conditions during tectonic exhumation of the newly formed oceanic lithosphere. Using optical microscopy and micro-Raman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2019-07, Vol.174 (7), p.1-25, Article 60
Hauptverfasser: Rouméjon, Stéphane, Andreani, Muriel, Früh-Green, Gretchen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 7
container_start_page 1
container_title Contributions to mineralogy and petrology
container_volume 174
creator Rouméjon, Stéphane
Andreani, Muriel
Früh-Green, Gretchen L.
description We report on the presence of the serpentine-type antigorite in abyssal-serpentinized peridotite. At mid-ocean spreading ridges, antigorite crystallizes under retrograde metamorphic conditions during tectonic exhumation of the newly formed oceanic lithosphere. Using optical microscopy and micro-Raman spectroscopy, we identified antigorite in 49 samples drilled at the Hess Deep (East Pacific Rise) and the Atlantis Massif (Mid-Atlantic Ridge, 30°N), and dredged along the Southwest Indian Ridge (62°–65°E). Overall, antigorite is common, but occurs in limited modal amounts. SEM and TEM investigations reveal its frequent crystallization after lizardite and chrysotile via dissolution–recrystallization processes and a local association with olivine or talc. We explain antigorite crystallization by the interaction with seawater-derived hydrothermal fluids moderately enriched in silica (metasomatism). The origin of silica is attributed to alteration of mafic intrusions or pyroxenes. Antigorite can, therefore, be considered a marker of preferential fluid pathways under rock-dominated conditions during exhumation of a portion of the oceanic lithosphere. We also measured the in-situ major and trace-element composition of antigorite and the predating and postdating phases. Most of the elements are immobile during the mineralogical transitions. Other elements (Ni, Ca, Al, and Ti) evolve within the serpentine textures, including antigorite, as a result of chemical exchanges accompanying the development of the sequence of serpentine textures. A further category includes elements that are specifically enriched (Mn, Sn) or depleted (Fluid-Mobile Elements: B, Sr, As, U, Sb, and Cl) in antigorite compared to lizardite and chrysotile. These enrichments and depletions possibly reflect a change of the fluid physicochemical characteristics allowing a change in element mobility during the dissolution–recrystallization accommodating the lizardite/chrysotile-to-antigorite transition. Such depletion in FME is comparable to depletions described in studies of serpentinization and antigorite formation in subduction zone setting, which suggests that the origin of antigorite in some subducted samples could be reevaluated.
doi_str_mv 10.1007/s00410-019-1595-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04828885v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A590014306</galeid><sourcerecordid>A590014306</sourcerecordid><originalsourceid>FETCH-LOGICAL-a544t-94408908a6d82ca4c8ab27273bbad59430b559bfe7a74dc805b0431db984e4d43</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpIdukPyA3Q089OB3J0lo6LqFtCgu5tLeAGEuyq-CVXMlb2P76yLhtKGzQQWj0vWHePEKuKdxQgPZjBuAUaqCqpkKJmr4iG8obVoPatq_JBqD8tkqpC_I250cob6nEhjzswuyHmPzsKpNOecZx9L9x9jFU9ph8GKpoHAZvquTmFIeE1lXZpckVYfiLxr7C7pQzjtXkkrdxLg3zFXnT45jduz_3Jfn--dO327t6f__l6-1uX6PgfK4V5yAVSNxayQxyI7FjLWubrkMrFG-gE0J1vWux5dZIEB3whtpOSe645c0l-bD2_YGjnpI_YDrpiF7f7fZ6qQGXTEopftHCvl_ZKcWfR5dn_RiPKZTxNGO8UUIwyp-pAUenfejjnNAcfDZ6J1RZXhlqW6j6DDW44BKOMbjel_J__M0ZvhzrDt6cFdBVYFLMObn-nzsKesldr7nrkrtecteLQbZq8rTE59KzwZdFT0FQrrk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243955214</pqid></control><display><type>article</type><title>Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites</title><source>SpringerNature Complete Journals</source><creator>Rouméjon, Stéphane ; Andreani, Muriel ; Früh-Green, Gretchen L.</creator><creatorcontrib>Rouméjon, Stéphane ; Andreani, Muriel ; Früh-Green, Gretchen L.</creatorcontrib><description>We report on the presence of the serpentine-type antigorite in abyssal-serpentinized peridotite. At mid-ocean spreading ridges, antigorite crystallizes under retrograde metamorphic conditions during tectonic exhumation of the newly formed oceanic lithosphere. Using optical microscopy and micro-Raman spectroscopy, we identified antigorite in 49 samples drilled at the Hess Deep (East Pacific Rise) and the Atlantis Massif (Mid-Atlantic Ridge, 30°N), and dredged along the Southwest Indian Ridge (62°–65°E). Overall, antigorite is common, but occurs in limited modal amounts. SEM and TEM investigations reveal its frequent crystallization after lizardite and chrysotile via dissolution–recrystallization processes and a local association with olivine or talc. We explain antigorite crystallization by the interaction with seawater-derived hydrothermal fluids moderately enriched in silica (metasomatism). The origin of silica is attributed to alteration of mafic intrusions or pyroxenes. Antigorite can, therefore, be considered a marker of preferential fluid pathways under rock-dominated conditions during exhumation of a portion of the oceanic lithosphere. We also measured the in-situ major and trace-element composition of antigorite and the predating and postdating phases. Most of the elements are immobile during the mineralogical transitions. Other elements (Ni, Ca, Al, and Ti) evolve within the serpentine textures, including antigorite, as a result of chemical exchanges accompanying the development of the sequence of serpentine textures. A further category includes elements that are specifically enriched (Mn, Sn) or depleted (Fluid-Mobile Elements: B, Sr, As, U, Sb, and Cl) in antigorite compared to lizardite and chrysotile. These enrichments and depletions possibly reflect a change of the fluid physicochemical characteristics allowing a change in element mobility during the dissolution–recrystallization accommodating the lizardite/chrysotile-to-antigorite transition. Such depletion in FME is comparable to depletions described in studies of serpentinization and antigorite formation in subduction zone setting, which suggests that the origin of antigorite in some subducted samples could be reevaluated.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-019-1595-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Analytical methods ; Antimony ; Chemical analysis ; Chrysotile ; Crystallization ; Depletion ; Dissolution ; Dissolving ; Dredging ; Earth and Environmental Science ; Earth Sciences ; Enrichment ; Environmental Sciences ; Fluids ; Geology ; Hydrothermal fluids ; Light microscopy ; Lithosphere ; Magma ; Manganese ; Massifs ; Mid-ocean ridges ; Mineral Resources ; Mineralogy ; Nickel ; Olivine ; Optical microscopy ; Organic chemistry ; Original Paper ; Peridotite ; Petrology ; Raman spectroscopy ; Recrystallization ; Ridges ; Sea-water ; Seawater ; Serpentine ; Serpentinite ; Serpentinization ; Silica ; Silicon dioxide ; Spreading centres ; Subduction ; Subduction (geology) ; Subduction zones ; Talc ; Tectonics ; Tin ; Trace elements ; Water analysis</subject><ispartof>Contributions to mineralogy and petrology, 2019-07, Vol.174 (7), p.1-25, Article 60</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Contributions to Mineralogy and Petrology is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a544t-94408908a6d82ca4c8ab27273bbad59430b559bfe7a74dc805b0431db984e4d43</citedby><cites>FETCH-LOGICAL-a544t-94408908a6d82ca4c8ab27273bbad59430b559bfe7a74dc805b0431db984e4d43</cites><orcidid>0000-0002-1847-6790 ; 0000-0001-8043-0905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-019-1595-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-019-1595-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04828885$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouméjon, Stéphane</creatorcontrib><creatorcontrib>Andreani, Muriel</creatorcontrib><creatorcontrib>Früh-Green, Gretchen L.</creatorcontrib><title>Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>We report on the presence of the serpentine-type antigorite in abyssal-serpentinized peridotite. At mid-ocean spreading ridges, antigorite crystallizes under retrograde metamorphic conditions during tectonic exhumation of the newly formed oceanic lithosphere. Using optical microscopy and micro-Raman spectroscopy, we identified antigorite in 49 samples drilled at the Hess Deep (East Pacific Rise) and the Atlantis Massif (Mid-Atlantic Ridge, 30°N), and dredged along the Southwest Indian Ridge (62°–65°E). Overall, antigorite is common, but occurs in limited modal amounts. SEM and TEM investigations reveal its frequent crystallization after lizardite and chrysotile via dissolution–recrystallization processes and a local association with olivine or talc. We explain antigorite crystallization by the interaction with seawater-derived hydrothermal fluids moderately enriched in silica (metasomatism). The origin of silica is attributed to alteration of mafic intrusions or pyroxenes. Antigorite can, therefore, be considered a marker of preferential fluid pathways under rock-dominated conditions during exhumation of a portion of the oceanic lithosphere. We also measured the in-situ major and trace-element composition of antigorite and the predating and postdating phases. Most of the elements are immobile during the mineralogical transitions. Other elements (Ni, Ca, Al, and Ti) evolve within the serpentine textures, including antigorite, as a result of chemical exchanges accompanying the development of the sequence of serpentine textures. A further category includes elements that are specifically enriched (Mn, Sn) or depleted (Fluid-Mobile Elements: B, Sr, As, U, Sb, and Cl) in antigorite compared to lizardite and chrysotile. These enrichments and depletions possibly reflect a change of the fluid physicochemical characteristics allowing a change in element mobility during the dissolution–recrystallization accommodating the lizardite/chrysotile-to-antigorite transition. Such depletion in FME is comparable to depletions described in studies of serpentinization and antigorite formation in subduction zone setting, which suggests that the origin of antigorite in some subducted samples could be reevaluated.</description><subject>Aluminum</subject><subject>Analytical methods</subject><subject>Antimony</subject><subject>Chemical analysis</subject><subject>Chrysotile</subject><subject>Crystallization</subject><subject>Depletion</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Dredging</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Enrichment</subject><subject>Environmental Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Hydrothermal fluids</subject><subject>Light microscopy</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Manganese</subject><subject>Massifs</subject><subject>Mid-ocean ridges</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Nickel</subject><subject>Olivine</subject><subject>Optical microscopy</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Peridotite</subject><subject>Petrology</subject><subject>Raman spectroscopy</subject><subject>Recrystallization</subject><subject>Ridges</subject><subject>Sea-water</subject><subject>Seawater</subject><subject>Serpentine</subject><subject>Serpentinite</subject><subject>Serpentinization</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Spreading centres</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Talc</subject><subject>Tectonics</subject><subject>Tin</subject><subject>Trace elements</subject><subject>Water analysis</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFr3DAQhUVpIdukPyA3Q089OB3J0lo6LqFtCgu5tLeAGEuyq-CVXMlb2P76yLhtKGzQQWj0vWHePEKuKdxQgPZjBuAUaqCqpkKJmr4iG8obVoPatq_JBqD8tkqpC_I250cob6nEhjzswuyHmPzsKpNOecZx9L9x9jFU9ph8GKpoHAZvquTmFIeE1lXZpckVYfiLxr7C7pQzjtXkkrdxLg3zFXnT45jduz_3Jfn--dO327t6f__l6-1uX6PgfK4V5yAVSNxayQxyI7FjLWubrkMrFG-gE0J1vWux5dZIEB3whtpOSe645c0l-bD2_YGjnpI_YDrpiF7f7fZ6qQGXTEopftHCvl_ZKcWfR5dn_RiPKZTxNGO8UUIwyp-pAUenfejjnNAcfDZ6J1RZXhlqW6j6DDW44BKOMbjel_J__M0ZvhzrDt6cFdBVYFLMObn-nzsKesldr7nrkrtecteLQbZq8rTE59KzwZdFT0FQrrk</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Rouméjon, Stéphane</creator><creator>Andreani, Muriel</creator><creator>Früh-Green, Gretchen L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1847-6790</orcidid><orcidid>https://orcid.org/0000-0001-8043-0905</orcidid></search><sort><creationdate>20190701</creationdate><title>Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites</title><author>Rouméjon, Stéphane ; Andreani, Muriel ; Früh-Green, Gretchen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a544t-94408908a6d82ca4c8ab27273bbad59430b559bfe7a74dc805b0431db984e4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Analytical methods</topic><topic>Antimony</topic><topic>Chemical analysis</topic><topic>Chrysotile</topic><topic>Crystallization</topic><topic>Depletion</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Dredging</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Enrichment</topic><topic>Environmental Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Hydrothermal fluids</topic><topic>Light microscopy</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Manganese</topic><topic>Massifs</topic><topic>Mid-ocean ridges</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Nickel</topic><topic>Olivine</topic><topic>Optical microscopy</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Peridotite</topic><topic>Petrology</topic><topic>Raman spectroscopy</topic><topic>Recrystallization</topic><topic>Ridges</topic><topic>Sea-water</topic><topic>Seawater</topic><topic>Serpentine</topic><topic>Serpentinite</topic><topic>Serpentinization</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Spreading centres</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Talc</topic><topic>Tectonics</topic><topic>Tin</topic><topic>Trace elements</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouméjon, Stéphane</creatorcontrib><creatorcontrib>Andreani, Muriel</creatorcontrib><creatorcontrib>Früh-Green, Gretchen L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouméjon, Stéphane</au><au>Andreani, Muriel</au><au>Früh-Green, Gretchen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>174</volume><issue>7</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>60</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>We report on the presence of the serpentine-type antigorite in abyssal-serpentinized peridotite. At mid-ocean spreading ridges, antigorite crystallizes under retrograde metamorphic conditions during tectonic exhumation of the newly formed oceanic lithosphere. Using optical microscopy and micro-Raman spectroscopy, we identified antigorite in 49 samples drilled at the Hess Deep (East Pacific Rise) and the Atlantis Massif (Mid-Atlantic Ridge, 30°N), and dredged along the Southwest Indian Ridge (62°–65°E). Overall, antigorite is common, but occurs in limited modal amounts. SEM and TEM investigations reveal its frequent crystallization after lizardite and chrysotile via dissolution–recrystallization processes and a local association with olivine or talc. We explain antigorite crystallization by the interaction with seawater-derived hydrothermal fluids moderately enriched in silica (metasomatism). The origin of silica is attributed to alteration of mafic intrusions or pyroxenes. Antigorite can, therefore, be considered a marker of preferential fluid pathways under rock-dominated conditions during exhumation of a portion of the oceanic lithosphere. We also measured the in-situ major and trace-element composition of antigorite and the predating and postdating phases. Most of the elements are immobile during the mineralogical transitions. Other elements (Ni, Ca, Al, and Ti) evolve within the serpentine textures, including antigorite, as a result of chemical exchanges accompanying the development of the sequence of serpentine textures. A further category includes elements that are specifically enriched (Mn, Sn) or depleted (Fluid-Mobile Elements: B, Sr, As, U, Sb, and Cl) in antigorite compared to lizardite and chrysotile. These enrichments and depletions possibly reflect a change of the fluid physicochemical characteristics allowing a change in element mobility during the dissolution–recrystallization accommodating the lizardite/chrysotile-to-antigorite transition. Such depletion in FME is comparable to depletions described in studies of serpentinization and antigorite formation in subduction zone setting, which suggests that the origin of antigorite in some subducted samples could be reevaluated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-019-1595-1</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1847-6790</orcidid><orcidid>https://orcid.org/0000-0001-8043-0905</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2019-07, Vol.174 (7), p.1-25, Article 60
issn 0010-7999
1432-0967
language eng
recordid cdi_hal_primary_oai_HAL_hal_04828885v1
source SpringerNature Complete Journals
subjects Aluminum
Analytical methods
Antimony
Chemical analysis
Chrysotile
Crystallization
Depletion
Dissolution
Dissolving
Dredging
Earth and Environmental Science
Earth Sciences
Enrichment
Environmental Sciences
Fluids
Geology
Hydrothermal fluids
Light microscopy
Lithosphere
Magma
Manganese
Massifs
Mid-ocean ridges
Mineral Resources
Mineralogy
Nickel
Olivine
Optical microscopy
Organic chemistry
Original Paper
Peridotite
Petrology
Raman spectroscopy
Recrystallization
Ridges
Sea-water
Seawater
Serpentine
Serpentinite
Serpentinization
Silica
Silicon dioxide
Spreading centres
Subduction
Subduction (geology)
Subduction zones
Talc
Tectonics
Tin
Trace elements
Water analysis
title Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antigorite%20crystallization%20during%20oceanic%20retrograde%20serpentinization%20of%20abyssal%20peridotites&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Roum%C3%A9jon,%20St%C3%A9phane&rft.date=2019-07-01&rft.volume=174&rft.issue=7&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=60&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-019-1595-1&rft_dat=%3Cgale_hal_p%3EA590014306%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243955214&rft_id=info:pmid/&rft_galeid=A590014306&rfr_iscdi=true