Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity
Thanks to advances of techniques like digital image correlation (DIC), the virtual fields method (VFM) has become a common approach to identifying mechanical parameters of materials when full-field displacement data are available. However, it is limited to a priori selected classical material models...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2025-02, Vol.434, p.117580, Article 117580 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117580 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 434 |
creator | Meng, Shuangshuang Yousefi, Ali Akbar Karkhaneh Avril, Stéphane |
description | Thanks to advances of techniques like digital image correlation (DIC), the virtual fields method (VFM) has become a common approach to identifying mechanical parameters of materials when full-field displacement data are available. However, it is limited to a priori selected classical material models. Recently, machine learning and model discovery has become a promising alternative for non-parametric material identification. This paper proposes an approach using a machine learning framework (NN-EUCLID) combined with the VFM. This framework has already demonstrated its good performance for hyperelasticity using 2D simulated displacement fields and a loss function formulated with the local equilibrium gap. Our study focuses on training a similar NN-EUCLID framework with 3D displacement fields obtained in a bulge inflation test to discover mechanical models of arteries. Instead of using the local equilibrium gap, we employ the VFM to formulate loss functions. This novelty allows us to address issues such as unknown boundary conditions. We present numerical examples showcasing the ability to train hyperelastic models for isotropic and anisotropic materials. Results obtained with experimental data demonstrate the method’s effectiveness in training neural-network constitutive models for biological tissues using accessible full-field measurements.
[Display omitted]
•A new VFM-based loss function for identifying constitutive laws via machine learning.•VFM-based constitutive modeling addresses challenges such as unknown reaction forces.•A new method for identifying anisotropic tissue properties via bulge-inflation tests.•Different virtual fields used to investigate their effects on identification process. |
doi_str_mv | 10.1016/j.cma.2024.117580 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04825735v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578252400834X</els_id><sourcerecordid>S004578252400834X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1710-3b2811ce86b4558aa543933a62f4c742c9d173807a8595322a44e98f99fac7ec3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhvegYK3-AG-5ekjcz2ajp1LUChUvCt6W6WZitqTZsLsW-u9NiXh0LgPD-wy8DyE3jBaMssXdrrB7KDjlsmCsVJqekRmlUuWl5uqCXMa4o-Noxmfk8xVs63rMO4TQu_4r30LEOju4kL6hyxqHXR2zPabW1_fZchg6ZyE532fJZ9C76FPwg7NZexwwYAcxOevS8YqcN9BFvP7dc_Lx9Pi-Wuebt-eX1XKTW1Yymost14xZ1IutVEoDKCkqIWDBG2lLyW1Vs1JoWoJWlRKcg5RY6aaqGrAlWjEnt9PfFjozBLeHcDQenFkvN-Z0o3JsXQp1YGOWTVkbfIwBmz-AUXNSZ3ZmVGdO6sykbmQeJgbHEgeHwUTrsLdYu4A2mdq7f-gfeLl4eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Meng, Shuangshuang ; Yousefi, Ali Akbar Karkhaneh ; Avril, Stéphane</creator><creatorcontrib>Meng, Shuangshuang ; Yousefi, Ali Akbar Karkhaneh ; Avril, Stéphane</creatorcontrib><description>Thanks to advances of techniques like digital image correlation (DIC), the virtual fields method (VFM) has become a common approach to identifying mechanical parameters of materials when full-field displacement data are available. However, it is limited to a priori selected classical material models. Recently, machine learning and model discovery has become a promising alternative for non-parametric material identification. This paper proposes an approach using a machine learning framework (NN-EUCLID) combined with the VFM. This framework has already demonstrated its good performance for hyperelasticity using 2D simulated displacement fields and a loss function formulated with the local equilibrium gap. Our study focuses on training a similar NN-EUCLID framework with 3D displacement fields obtained in a bulge inflation test to discover mechanical models of arteries. Instead of using the local equilibrium gap, we employ the VFM to formulate loss functions. This novelty allows us to address issues such as unknown boundary conditions. We present numerical examples showcasing the ability to train hyperelastic models for isotropic and anisotropic materials. Results obtained with experimental data demonstrate the method’s effectiveness in training neural-network constitutive models for biological tissues using accessible full-field measurements.
[Display omitted]
•A new VFM-based loss function for identifying constitutive laws via machine learning.•VFM-based constitutive modeling addresses challenges such as unknown reaction forces.•A new method for identifying anisotropic tissue properties via bulge-inflation tests.•Different virtual fields used to investigate their effects on identification process.</description><identifier>ISSN: 0045-7825</identifier><identifier>DOI: 10.1016/j.cma.2024.117580</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biological tissue ; Biomechanics ; Deep learning ; Hyperelastic models ; Inverse identification ; Mechanics ; Neural network ; Physics ; Virtual field method</subject><ispartof>Computer methods in applied mechanics and engineering, 2025-02, Vol.434, p.117580, Article 117580</ispartof><rights>2024 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1710-3b2811ce86b4558aa543933a62f4c742c9d173807a8595322a44e98f99fac7ec3</cites><orcidid>0000-0002-0411-7877 ; 0000-0002-8604-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2024.117580$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04825735$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Shuangshuang</creatorcontrib><creatorcontrib>Yousefi, Ali Akbar Karkhaneh</creatorcontrib><creatorcontrib>Avril, Stéphane</creatorcontrib><title>Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity</title><title>Computer methods in applied mechanics and engineering</title><description>Thanks to advances of techniques like digital image correlation (DIC), the virtual fields method (VFM) has become a common approach to identifying mechanical parameters of materials when full-field displacement data are available. However, it is limited to a priori selected classical material models. Recently, machine learning and model discovery has become a promising alternative for non-parametric material identification. This paper proposes an approach using a machine learning framework (NN-EUCLID) combined with the VFM. This framework has already demonstrated its good performance for hyperelasticity using 2D simulated displacement fields and a loss function formulated with the local equilibrium gap. Our study focuses on training a similar NN-EUCLID framework with 3D displacement fields obtained in a bulge inflation test to discover mechanical models of arteries. Instead of using the local equilibrium gap, we employ the VFM to formulate loss functions. This novelty allows us to address issues such as unknown boundary conditions. We present numerical examples showcasing the ability to train hyperelastic models for isotropic and anisotropic materials. Results obtained with experimental data demonstrate the method’s effectiveness in training neural-network constitutive models for biological tissues using accessible full-field measurements.
[Display omitted]
•A new VFM-based loss function for identifying constitutive laws via machine learning.•VFM-based constitutive modeling addresses challenges such as unknown reaction forces.•A new method for identifying anisotropic tissue properties via bulge-inflation tests.•Different virtual fields used to investigate their effects on identification process.</description><subject>Biological tissue</subject><subject>Biomechanics</subject><subject>Deep learning</subject><subject>Hyperelastic models</subject><subject>Inverse identification</subject><subject>Mechanics</subject><subject>Neural network</subject><subject>Physics</subject><subject>Virtual field method</subject><issn>0045-7825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhvegYK3-AG-5ekjcz2ajp1LUChUvCt6W6WZitqTZsLsW-u9NiXh0LgPD-wy8DyE3jBaMssXdrrB7KDjlsmCsVJqekRmlUuWl5uqCXMa4o-Noxmfk8xVs63rMO4TQu_4r30LEOju4kL6hyxqHXR2zPabW1_fZchg6ZyE532fJZ9C76FPwg7NZexwwYAcxOevS8YqcN9BFvP7dc_Lx9Pi-Wuebt-eX1XKTW1Yymost14xZ1IutVEoDKCkqIWDBG2lLyW1Vs1JoWoJWlRKcg5RY6aaqGrAlWjEnt9PfFjozBLeHcDQenFkvN-Z0o3JsXQp1YGOWTVkbfIwBmz-AUXNSZ3ZmVGdO6sykbmQeJgbHEgeHwUTrsLdYu4A2mdq7f-gfeLl4eg</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Meng, Shuangshuang</creator><creator>Yousefi, Ali Akbar Karkhaneh</creator><creator>Avril, Stéphane</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0411-7877</orcidid><orcidid>https://orcid.org/0000-0002-8604-7736</orcidid></search><sort><creationdate>20250201</creationdate><title>Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity</title><author>Meng, Shuangshuang ; Yousefi, Ali Akbar Karkhaneh ; Avril, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1710-3b2811ce86b4558aa543933a62f4c742c9d173807a8595322a44e98f99fac7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biological tissue</topic><topic>Biomechanics</topic><topic>Deep learning</topic><topic>Hyperelastic models</topic><topic>Inverse identification</topic><topic>Mechanics</topic><topic>Neural network</topic><topic>Physics</topic><topic>Virtual field method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Shuangshuang</creatorcontrib><creatorcontrib>Yousefi, Ali Akbar Karkhaneh</creatorcontrib><creatorcontrib>Avril, Stéphane</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Shuangshuang</au><au>Yousefi, Ali Akbar Karkhaneh</au><au>Avril, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>434</volume><spage>117580</spage><pages>117580-</pages><artnum>117580</artnum><issn>0045-7825</issn><abstract>Thanks to advances of techniques like digital image correlation (DIC), the virtual fields method (VFM) has become a common approach to identifying mechanical parameters of materials when full-field displacement data are available. However, it is limited to a priori selected classical material models. Recently, machine learning and model discovery has become a promising alternative for non-parametric material identification. This paper proposes an approach using a machine learning framework (NN-EUCLID) combined with the VFM. This framework has already demonstrated its good performance for hyperelasticity using 2D simulated displacement fields and a loss function formulated with the local equilibrium gap. Our study focuses on training a similar NN-EUCLID framework with 3D displacement fields obtained in a bulge inflation test to discover mechanical models of arteries. Instead of using the local equilibrium gap, we employ the VFM to formulate loss functions. This novelty allows us to address issues such as unknown boundary conditions. We present numerical examples showcasing the ability to train hyperelastic models for isotropic and anisotropic materials. Results obtained with experimental data demonstrate the method’s effectiveness in training neural-network constitutive models for biological tissues using accessible full-field measurements.
[Display omitted]
•A new VFM-based loss function for identifying constitutive laws via machine learning.•VFM-based constitutive modeling addresses challenges such as unknown reaction forces.•A new method for identifying anisotropic tissue properties via bulge-inflation tests.•Different virtual fields used to investigate their effects on identification process.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2024.117580</doi><orcidid>https://orcid.org/0000-0002-0411-7877</orcidid><orcidid>https://orcid.org/0000-0002-8604-7736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2025-02, Vol.434, p.117580, Article 117580 |
issn | 0045-7825 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04825735v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Biological tissue Biomechanics Deep learning Hyperelastic models Inverse identification Mechanics Neural network Physics Virtual field method |
title | Machine-learning-based virtual fields method: Application to anisotropic hyperelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-learning-based%20virtual%20fields%20method:%20Application%20to%20anisotropic%20hyperelasticity&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Meng,%20Shuangshuang&rft.date=2025-02-01&rft.volume=434&rft.spage=117580&rft.pages=117580-&rft.artnum=117580&rft.issn=0045-7825&rft_id=info:doi/10.1016/j.cma.2024.117580&rft_dat=%3Celsevier_hal_p%3ES004578252400834X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S004578252400834X&rfr_iscdi=true |