SHREC 2024: Recognition of dynamic hand motions molding clay

Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal data, it is still unclear how well state-of-the-art techniques perform in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & graphics 2024-10, Vol.123, p.104012, Article 104012
Hauptverfasser: Veldhuijzen, Ben, Veltkamp, Remco C., Ikne, Omar, Allaert, Benjamin, Wannous, Hazem, Emporio, Marco, Giachetti, Andrea, LaViola, Joseph J., He, Ruiwen, Benhabiles, Halim, Cabani, Adnane, Fleury, Anthony, Hammoudi, Karim, Gavalas, Konstantinos, Vlachos, Christoforos, Papanikolaou, Athanasios, Romanelis, Ioannis, Fotis, Vlassis, Arvanitis, Gerasimos, Moustakas, Konstantinos, Hanik, Martin, Nava-Yazdani, Esfandiar, von Tycowicz, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104012
container_title Computers & graphics
container_volume 123
creator Veldhuijzen, Ben
Veltkamp, Remco C.
Ikne, Omar
Allaert, Benjamin
Wannous, Hazem
Emporio, Marco
Giachetti, Andrea
LaViola, Joseph J.
He, Ruiwen
Benhabiles, Halim
Cabani, Adnane
Fleury, Anthony
Hammoudi, Karim
Gavalas, Konstantinos
Vlachos, Christoforos
Papanikolaou, Athanasios
Romanelis, Ioannis
Fotis, Vlassis
Arvanitis, Gerasimos
Moustakas, Konstantinos
Hanik, Martin
Nava-Yazdani, Esfandiar
von Tycowicz, Christoph
description Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal data, it is still unclear how well state-of-the-art techniques perform in a scenario using precise motions with two hands. This paper presents the results of the SHREC 2024 contest organized to evaluate methods for their recognition of highly similar hand motions using the skeletal spatial coordinate data of both hands. The task is the recognition of 7 motion classes given their spatial coordinates in a frame-by-frame motion. The skeletal data has been captured using a Vicon system and pre-processed into a coordinate system using Blender and Vicon Shogun Post. We created a small, novel dataset with a high variety of durations in frames. This paper shows the results of the contest, showing the techniques created by the 5 research groups on this challenging task and comparing them to our baseline method. [Display omitted]
doi_str_mv 10.1016/j.cag.2024.104012
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04823611v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009784932400147X</els_id><sourcerecordid>oai_HAL_hal_04823611v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-2b645831223a171561b16ce31a5dab3bdd290617259392488c512512b31cdb413</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhfOg4Jz-AN_y6kNr7k2aterLGNMKBWHqc0iTbMvoGmnKYP_eloqPwoXDPZzvwj2E3AFLgYF8OKRG71JkKIZdMMALMmOsWCS5KPgVuY7xwBhDlGJGnj_KzXpFx_Aj3TgTdq3vfWhp2FJ7bvXRG7rXraXHMNpx0Mb6dkdNo8835HKrm-huf3VOvl7Wn6syqd5f31bLKjEIvE-wliLLOSByDQvIJNQgjeOgM6trXluLBZOwwKzgBYo8NxngMDUHY2sBfE7up7t73ajvzh91d1ZBe1UuKzV6TOTIJcBpzMKUNV2IsXPbPwCYGutRBzXUo8aP1VTPwDxNjBueOHnXqWi8a42zvnOmVzb4f-gfBfpqpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SHREC 2024: Recognition of dynamic hand motions molding clay</title><source>Elsevier ScienceDirect Journals</source><creator>Veldhuijzen, Ben ; Veltkamp, Remco C. ; Ikne, Omar ; Allaert, Benjamin ; Wannous, Hazem ; Emporio, Marco ; Giachetti, Andrea ; LaViola, Joseph J. ; He, Ruiwen ; Benhabiles, Halim ; Cabani, Adnane ; Fleury, Anthony ; Hammoudi, Karim ; Gavalas, Konstantinos ; Vlachos, Christoforos ; Papanikolaou, Athanasios ; Romanelis, Ioannis ; Fotis, Vlassis ; Arvanitis, Gerasimos ; Moustakas, Konstantinos ; Hanik, Martin ; Nava-Yazdani, Esfandiar ; von Tycowicz, Christoph</creator><creatorcontrib>Veldhuijzen, Ben ; Veltkamp, Remco C. ; Ikne, Omar ; Allaert, Benjamin ; Wannous, Hazem ; Emporio, Marco ; Giachetti, Andrea ; LaViola, Joseph J. ; He, Ruiwen ; Benhabiles, Halim ; Cabani, Adnane ; Fleury, Anthony ; Hammoudi, Karim ; Gavalas, Konstantinos ; Vlachos, Christoforos ; Papanikolaou, Athanasios ; Romanelis, Ioannis ; Fotis, Vlassis ; Arvanitis, Gerasimos ; Moustakas, Konstantinos ; Hanik, Martin ; Nava-Yazdani, Esfandiar ; von Tycowicz, Christoph</creatorcontrib><description>Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal data, it is still unclear how well state-of-the-art techniques perform in a scenario using precise motions with two hands. This paper presents the results of the SHREC 2024 contest organized to evaluate methods for their recognition of highly similar hand motions using the skeletal spatial coordinate data of both hands. The task is the recognition of 7 motion classes given their spatial coordinates in a frame-by-frame motion. The skeletal data has been captured using a Vicon system and pre-processed into a coordinate system using Blender and Vicon Shogun Post. We created a small, novel dataset with a high variety of durations in frames. This paper shows the results of the contest, showing the techniques created by the 5 research groups on this challenging task and comparing them to our baseline method. [Display omitted]</description><identifier>ISSN: 0097-8493</identifier><identifier>DOI: 10.1016/j.cag.2024.104012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>3D shape retrieval challenge ; Computer Science ; Gesture recognition ; Hand skeleton gestures ; Motion capture ; Neural networks ; SHREC</subject><ispartof>Computers &amp; graphics, 2024-10, Vol.123, p.104012, Article 104012</ispartof><rights>2024 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-2b645831223a171561b16ce31a5dab3bdd290617259392488c512512b31cdb413</cites><orcidid>0000-0001-5948-8950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S009784932400147X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04823611$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veldhuijzen, Ben</creatorcontrib><creatorcontrib>Veltkamp, Remco C.</creatorcontrib><creatorcontrib>Ikne, Omar</creatorcontrib><creatorcontrib>Allaert, Benjamin</creatorcontrib><creatorcontrib>Wannous, Hazem</creatorcontrib><creatorcontrib>Emporio, Marco</creatorcontrib><creatorcontrib>Giachetti, Andrea</creatorcontrib><creatorcontrib>LaViola, Joseph J.</creatorcontrib><creatorcontrib>He, Ruiwen</creatorcontrib><creatorcontrib>Benhabiles, Halim</creatorcontrib><creatorcontrib>Cabani, Adnane</creatorcontrib><creatorcontrib>Fleury, Anthony</creatorcontrib><creatorcontrib>Hammoudi, Karim</creatorcontrib><creatorcontrib>Gavalas, Konstantinos</creatorcontrib><creatorcontrib>Vlachos, Christoforos</creatorcontrib><creatorcontrib>Papanikolaou, Athanasios</creatorcontrib><creatorcontrib>Romanelis, Ioannis</creatorcontrib><creatorcontrib>Fotis, Vlassis</creatorcontrib><creatorcontrib>Arvanitis, Gerasimos</creatorcontrib><creatorcontrib>Moustakas, Konstantinos</creatorcontrib><creatorcontrib>Hanik, Martin</creatorcontrib><creatorcontrib>Nava-Yazdani, Esfandiar</creatorcontrib><creatorcontrib>von Tycowicz, Christoph</creatorcontrib><title>SHREC 2024: Recognition of dynamic hand motions molding clay</title><title>Computers &amp; graphics</title><description>Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal data, it is still unclear how well state-of-the-art techniques perform in a scenario using precise motions with two hands. This paper presents the results of the SHREC 2024 contest organized to evaluate methods for their recognition of highly similar hand motions using the skeletal spatial coordinate data of both hands. The task is the recognition of 7 motion classes given their spatial coordinates in a frame-by-frame motion. The skeletal data has been captured using a Vicon system and pre-processed into a coordinate system using Blender and Vicon Shogun Post. We created a small, novel dataset with a high variety of durations in frames. This paper shows the results of the contest, showing the techniques created by the 5 research groups on this challenging task and comparing them to our baseline method. [Display omitted]</description><subject>3D shape retrieval challenge</subject><subject>Computer Science</subject><subject>Gesture recognition</subject><subject>Hand skeleton gestures</subject><subject>Motion capture</subject><subject>Neural networks</subject><subject>SHREC</subject><issn>0097-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhfOg4Jz-AN_y6kNr7k2aterLGNMKBWHqc0iTbMvoGmnKYP_eloqPwoXDPZzvwj2E3AFLgYF8OKRG71JkKIZdMMALMmOsWCS5KPgVuY7xwBhDlGJGnj_KzXpFx_Aj3TgTdq3vfWhp2FJ7bvXRG7rXraXHMNpx0Mb6dkdNo8835HKrm-huf3VOvl7Wn6syqd5f31bLKjEIvE-wliLLOSByDQvIJNQgjeOgM6trXluLBZOwwKzgBYo8NxngMDUHY2sBfE7up7t73ajvzh91d1ZBe1UuKzV6TOTIJcBpzMKUNV2IsXPbPwCYGutRBzXUo8aP1VTPwDxNjBueOHnXqWi8a42zvnOmVzb4f-gfBfpqpA</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Veldhuijzen, Ben</creator><creator>Veltkamp, Remco C.</creator><creator>Ikne, Omar</creator><creator>Allaert, Benjamin</creator><creator>Wannous, Hazem</creator><creator>Emporio, Marco</creator><creator>Giachetti, Andrea</creator><creator>LaViola, Joseph J.</creator><creator>He, Ruiwen</creator><creator>Benhabiles, Halim</creator><creator>Cabani, Adnane</creator><creator>Fleury, Anthony</creator><creator>Hammoudi, Karim</creator><creator>Gavalas, Konstantinos</creator><creator>Vlachos, Christoforos</creator><creator>Papanikolaou, Athanasios</creator><creator>Romanelis, Ioannis</creator><creator>Fotis, Vlassis</creator><creator>Arvanitis, Gerasimos</creator><creator>Moustakas, Konstantinos</creator><creator>Hanik, Martin</creator><creator>Nava-Yazdani, Esfandiar</creator><creator>von Tycowicz, Christoph</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5948-8950</orcidid></search><sort><creationdate>202410</creationdate><title>SHREC 2024: Recognition of dynamic hand motions molding clay</title><author>Veldhuijzen, Ben ; Veltkamp, Remco C. ; Ikne, Omar ; Allaert, Benjamin ; Wannous, Hazem ; Emporio, Marco ; Giachetti, Andrea ; LaViola, Joseph J. ; He, Ruiwen ; Benhabiles, Halim ; Cabani, Adnane ; Fleury, Anthony ; Hammoudi, Karim ; Gavalas, Konstantinos ; Vlachos, Christoforos ; Papanikolaou, Athanasios ; Romanelis, Ioannis ; Fotis, Vlassis ; Arvanitis, Gerasimos ; Moustakas, Konstantinos ; Hanik, Martin ; Nava-Yazdani, Esfandiar ; von Tycowicz, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-2b645831223a171561b16ce31a5dab3bdd290617259392488c512512b31cdb413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D shape retrieval challenge</topic><topic>Computer Science</topic><topic>Gesture recognition</topic><topic>Hand skeleton gestures</topic><topic>Motion capture</topic><topic>Neural networks</topic><topic>SHREC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veldhuijzen, Ben</creatorcontrib><creatorcontrib>Veltkamp, Remco C.</creatorcontrib><creatorcontrib>Ikne, Omar</creatorcontrib><creatorcontrib>Allaert, Benjamin</creatorcontrib><creatorcontrib>Wannous, Hazem</creatorcontrib><creatorcontrib>Emporio, Marco</creatorcontrib><creatorcontrib>Giachetti, Andrea</creatorcontrib><creatorcontrib>LaViola, Joseph J.</creatorcontrib><creatorcontrib>He, Ruiwen</creatorcontrib><creatorcontrib>Benhabiles, Halim</creatorcontrib><creatorcontrib>Cabani, Adnane</creatorcontrib><creatorcontrib>Fleury, Anthony</creatorcontrib><creatorcontrib>Hammoudi, Karim</creatorcontrib><creatorcontrib>Gavalas, Konstantinos</creatorcontrib><creatorcontrib>Vlachos, Christoforos</creatorcontrib><creatorcontrib>Papanikolaou, Athanasios</creatorcontrib><creatorcontrib>Romanelis, Ioannis</creatorcontrib><creatorcontrib>Fotis, Vlassis</creatorcontrib><creatorcontrib>Arvanitis, Gerasimos</creatorcontrib><creatorcontrib>Moustakas, Konstantinos</creatorcontrib><creatorcontrib>Hanik, Martin</creatorcontrib><creatorcontrib>Nava-Yazdani, Esfandiar</creatorcontrib><creatorcontrib>von Tycowicz, Christoph</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veldhuijzen, Ben</au><au>Veltkamp, Remco C.</au><au>Ikne, Omar</au><au>Allaert, Benjamin</au><au>Wannous, Hazem</au><au>Emporio, Marco</au><au>Giachetti, Andrea</au><au>LaViola, Joseph J.</au><au>He, Ruiwen</au><au>Benhabiles, Halim</au><au>Cabani, Adnane</au><au>Fleury, Anthony</au><au>Hammoudi, Karim</au><au>Gavalas, Konstantinos</au><au>Vlachos, Christoforos</au><au>Papanikolaou, Athanasios</au><au>Romanelis, Ioannis</au><au>Fotis, Vlassis</au><au>Arvanitis, Gerasimos</au><au>Moustakas, Konstantinos</au><au>Hanik, Martin</au><au>Nava-Yazdani, Esfandiar</au><au>von Tycowicz, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SHREC 2024: Recognition of dynamic hand motions molding clay</atitle><jtitle>Computers &amp; graphics</jtitle><date>2024-10</date><risdate>2024</risdate><volume>123</volume><spage>104012</spage><pages>104012-</pages><artnum>104012</artnum><issn>0097-8493</issn><abstract>Gesture recognition is a tool to enable novel interactions with different techniques and applications, like Mixed Reality and Virtual Reality environments. With all the recent advancements in gesture recognition from skeletal data, it is still unclear how well state-of-the-art techniques perform in a scenario using precise motions with two hands. This paper presents the results of the SHREC 2024 contest organized to evaluate methods for their recognition of highly similar hand motions using the skeletal spatial coordinate data of both hands. The task is the recognition of 7 motion classes given their spatial coordinates in a frame-by-frame motion. The skeletal data has been captured using a Vicon system and pre-processed into a coordinate system using Blender and Vicon Shogun Post. We created a small, novel dataset with a high variety of durations in frames. This paper shows the results of the contest, showing the techniques created by the 5 research groups on this challenging task and comparing them to our baseline method. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cag.2024.104012</doi><orcidid>https://orcid.org/0000-0001-5948-8950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0097-8493
ispartof Computers & graphics, 2024-10, Vol.123, p.104012, Article 104012
issn 0097-8493
language eng
recordid cdi_hal_primary_oai_HAL_hal_04823611v1
source Elsevier ScienceDirect Journals
subjects 3D shape retrieval challenge
Computer Science
Gesture recognition
Hand skeleton gestures
Motion capture
Neural networks
SHREC
title SHREC 2024: Recognition of dynamic hand motions molding clay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SHREC%202024:%20Recognition%20of%20dynamic%20hand%20motions%20molding%20clay&rft.jtitle=Computers%20&%20graphics&rft.au=Veldhuijzen,%20Ben&rft.date=2024-10&rft.volume=123&rft.spage=104012&rft.pages=104012-&rft.artnum=104012&rft.issn=0097-8493&rft_id=info:doi/10.1016/j.cag.2024.104012&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04823611v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S009784932400147X&rfr_iscdi=true