Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation
This research explores the impact of cyclic uniaxial transverse deformation on an in-line hollow-core fiber etalon. The structure consists of a 6 mm long section of capillary fiber spliced between two standard single-mode fibers. The optical response of the structure is theoretically analyzed in spe...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2024-09, Vol.42 (18), p.6351-6359 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6359 |
---|---|
container_issue | 18 |
container_start_page | 6351 |
container_title | Journal of lightwave technology |
container_volume | 42 |
creator | Sanchez-Gonzalez, Arturo Leandro, Daniel Dauliat, Romain Jamier, Raphael Roy, Philippe Perez-Herrera, Rosa Ana |
description | This research explores the impact of cyclic uniaxial transverse deformation on an in-line hollow-core fiber etalon. The structure consists of a 6 mm long section of capillary fiber spliced between two standard single-mode fibers. The optical response of the structure is theoretically analyzed in spectral and transformed domains, evidencing Fabry-Perot and antiresonant interferometric mechanisms. A validation of the theoretical behavior is carried out both through simulation and experimentation. The performance of the structure for uniaxial transverse deformation is subsequently evaluated by tracking the phase of the main component in the transformed domain. The relevance of measuring in the time domain is discussed, demonstrating improved accuracy over wavelength shift and inverse spatial domain methods. Several sensors with different internal diameters underwent cycles of transverse deformation, revealing robust linear trends in every case. On average, the structure demonstrated elastic behavior under deformations up to 42 μm, with a mean sensitivity of 0.174 rad/μm, and mechanical breakage taking place at 58 μm. The results confirmed the suitability of the sensor to withstand uniaxial micro-displacements or pressures, with smaller inner diameter capillary fibers showing the best performance. |
doi_str_mv | 10.1109/JLT.2024.3438933 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04815033v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623909</ieee_id><sourcerecordid>oai_HAL_hal_04815033v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1383-75dc8b02a3591d55c60c3d9e8485790f67bb8867fb62c930f195577067db46ea3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzB4ZUg5--zYHqtCKRCJoe1sOYkjjNKksgui_55UrRDD6aS7951Oj5BbBhPGwDy8FqsJBy4mKFAbxDMyYlLqjHOG52QECjHTiotLcpXSJwATQqsReVvuvuo97Rv60mVF6DyduW1oWxf3dB5KH-nSd6mPtBlq3QX3E1xLV9F16dvH5OmjHzYbtwt9d00uGtcmf3PqY7KeP61mi6x4f36ZTYusYqgxU7KudAncoTSslrLKocLaeC20VAaaXJWl1rlqypxXBqFhRkqlIFd1KXLvcEzuj3c_XGu3MWyGZ23vgl1MC3uYgdBMAuI3G1g4slXsU4q--QswsAdxdhBnD-LsSdwQuTtGgvf-H55zNGDwF7s4Z9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation</title><source>IEEE Electronic Library (IEL)</source><creator>Sanchez-Gonzalez, Arturo ; Leandro, Daniel ; Dauliat, Romain ; Jamier, Raphael ; Roy, Philippe ; Perez-Herrera, Rosa Ana</creator><creatorcontrib>Sanchez-Gonzalez, Arturo ; Leandro, Daniel ; Dauliat, Romain ; Jamier, Raphael ; Roy, Philippe ; Perez-Herrera, Rosa Ana</creatorcontrib><description>This research explores the impact of cyclic uniaxial transverse deformation on an in-line hollow-core fiber etalon. The structure consists of a 6 mm long section of capillary fiber spliced between two standard single-mode fibers. The optical response of the structure is theoretically analyzed in spectral and transformed domains, evidencing Fabry-Perot and antiresonant interferometric mechanisms. A validation of the theoretical behavior is carried out both through simulation and experimentation. The performance of the structure for uniaxial transverse deformation is subsequently evaluated by tracking the phase of the main component in the transformed domain. The relevance of measuring in the time domain is discussed, demonstrating improved accuracy over wavelength shift and inverse spatial domain methods. Several sensors with different internal diameters underwent cycles of transverse deformation, revealing robust linear trends in every case. On average, the structure demonstrated elastic behavior under deformations up to 42 μm, with a mean sensitivity of 0.174 rad/μm, and mechanical breakage taking place at 58 μm. The results confirmed the suitability of the sensor to withstand uniaxial micro-displacements or pressures, with smaller inner diameter capillary fibers showing the best performance.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3438933</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antiresonant ; capillary fiber ; Claddings ; Deformation ; Engineering Sciences ; Fabry-Perot ; fast Fourier transform ; hollow core fiber ; interferometer ; Monitoring ; optical fiber sensor ; Optical fiber sensors ; Optical fibers ; Optical interferometry ; phase tracking ; Physics ; reflectance ; Sensitivity</subject><ispartof>Journal of lightwave technology, 2024-09, Vol.42 (18), p.6351-6359</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1383-75dc8b02a3591d55c60c3d9e8485790f67bb8867fb62c930f195577067db46ea3</cites><orcidid>0000-0002-8877-2050 ; 0000-0002-6775-6852 ; 0000-0001-5238-2408 ; 0000-0002-8971-8558 ; 0000-0002-6856-9143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623909$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04815033$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Gonzalez, Arturo</creatorcontrib><creatorcontrib>Leandro, Daniel</creatorcontrib><creatorcontrib>Dauliat, Romain</creatorcontrib><creatorcontrib>Jamier, Raphael</creatorcontrib><creatorcontrib>Roy, Philippe</creatorcontrib><creatorcontrib>Perez-Herrera, Rosa Ana</creatorcontrib><title>Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>This research explores the impact of cyclic uniaxial transverse deformation on an in-line hollow-core fiber etalon. The structure consists of a 6 mm long section of capillary fiber spliced between two standard single-mode fibers. The optical response of the structure is theoretically analyzed in spectral and transformed domains, evidencing Fabry-Perot and antiresonant interferometric mechanisms. A validation of the theoretical behavior is carried out both through simulation and experimentation. The performance of the structure for uniaxial transverse deformation is subsequently evaluated by tracking the phase of the main component in the transformed domain. The relevance of measuring in the time domain is discussed, demonstrating improved accuracy over wavelength shift and inverse spatial domain methods. Several sensors with different internal diameters underwent cycles of transverse deformation, revealing robust linear trends in every case. On average, the structure demonstrated elastic behavior under deformations up to 42 μm, with a mean sensitivity of 0.174 rad/μm, and mechanical breakage taking place at 58 μm. The results confirmed the suitability of the sensor to withstand uniaxial micro-displacements or pressures, with smaller inner diameter capillary fibers showing the best performance.</description><subject>Antiresonant</subject><subject>capillary fiber</subject><subject>Claddings</subject><subject>Deformation</subject><subject>Engineering Sciences</subject><subject>Fabry-Perot</subject><subject>fast Fourier transform</subject><subject>hollow core fiber</subject><subject>interferometer</subject><subject>Monitoring</subject><subject>optical fiber sensor</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical interferometry</subject><subject>phase tracking</subject><subject>Physics</subject><subject>reflectance</subject><subject>Sensitivity</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzB4ZUg5--zYHqtCKRCJoe1sOYkjjNKksgui_55UrRDD6aS7951Oj5BbBhPGwDy8FqsJBy4mKFAbxDMyYlLqjHOG52QECjHTiotLcpXSJwATQqsReVvuvuo97Rv60mVF6DyduW1oWxf3dB5KH-nSd6mPtBlq3QX3E1xLV9F16dvH5OmjHzYbtwt9d00uGtcmf3PqY7KeP61mi6x4f36ZTYusYqgxU7KudAncoTSslrLKocLaeC20VAaaXJWl1rlqypxXBqFhRkqlIFd1KXLvcEzuj3c_XGu3MWyGZ23vgl1MC3uYgdBMAuI3G1g4slXsU4q--QswsAdxdhBnD-LsSdwQuTtGgvf-H55zNGDwF7s4Z9o</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Sanchez-Gonzalez, Arturo</creator><creator>Leandro, Daniel</creator><creator>Dauliat, Romain</creator><creator>Jamier, Raphael</creator><creator>Roy, Philippe</creator><creator>Perez-Herrera, Rosa Ana</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8877-2050</orcidid><orcidid>https://orcid.org/0000-0002-6775-6852</orcidid><orcidid>https://orcid.org/0000-0001-5238-2408</orcidid><orcidid>https://orcid.org/0000-0002-8971-8558</orcidid><orcidid>https://orcid.org/0000-0002-6856-9143</orcidid></search><sort><creationdate>20240915</creationdate><title>Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation</title><author>Sanchez-Gonzalez, Arturo ; Leandro, Daniel ; Dauliat, Romain ; Jamier, Raphael ; Roy, Philippe ; Perez-Herrera, Rosa Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1383-75dc8b02a3591d55c60c3d9e8485790f67bb8867fb62c930f195577067db46ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiresonant</topic><topic>capillary fiber</topic><topic>Claddings</topic><topic>Deformation</topic><topic>Engineering Sciences</topic><topic>Fabry-Perot</topic><topic>fast Fourier transform</topic><topic>hollow core fiber</topic><topic>interferometer</topic><topic>Monitoring</topic><topic>optical fiber sensor</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical interferometry</topic><topic>phase tracking</topic><topic>Physics</topic><topic>reflectance</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Gonzalez, Arturo</creatorcontrib><creatorcontrib>Leandro, Daniel</creatorcontrib><creatorcontrib>Dauliat, Romain</creatorcontrib><creatorcontrib>Jamier, Raphael</creatorcontrib><creatorcontrib>Roy, Philippe</creatorcontrib><creatorcontrib>Perez-Herrera, Rosa Ana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Gonzalez, Arturo</au><au>Leandro, Daniel</au><au>Dauliat, Romain</au><au>Jamier, Raphael</au><au>Roy, Philippe</au><au>Perez-Herrera, Rosa Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2024-09-15</date><risdate>2024</risdate><volume>42</volume><issue>18</issue><spage>6351</spage><epage>6359</epage><pages>6351-6359</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>This research explores the impact of cyclic uniaxial transverse deformation on an in-line hollow-core fiber etalon. The structure consists of a 6 mm long section of capillary fiber spliced between two standard single-mode fibers. The optical response of the structure is theoretically analyzed in spectral and transformed domains, evidencing Fabry-Perot and antiresonant interferometric mechanisms. A validation of the theoretical behavior is carried out both through simulation and experimentation. The performance of the structure for uniaxial transverse deformation is subsequently evaluated by tracking the phase of the main component in the transformed domain. The relevance of measuring in the time domain is discussed, demonstrating improved accuracy over wavelength shift and inverse spatial domain methods. Several sensors with different internal diameters underwent cycles of transverse deformation, revealing robust linear trends in every case. On average, the structure demonstrated elastic behavior under deformations up to 42 μm, with a mean sensitivity of 0.174 rad/μm, and mechanical breakage taking place at 58 μm. The results confirmed the suitability of the sensor to withstand uniaxial micro-displacements or pressures, with smaller inner diameter capillary fibers showing the best performance.</abstract><pub>IEEE</pub><doi>10.1109/JLT.2024.3438933</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8877-2050</orcidid><orcidid>https://orcid.org/0000-0002-6775-6852</orcidid><orcidid>https://orcid.org/0000-0001-5238-2408</orcidid><orcidid>https://orcid.org/0000-0002-8971-8558</orcidid><orcidid>https://orcid.org/0000-0002-6856-9143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2024-09, Vol.42 (18), p.6351-6359 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04815033v1 |
source | IEEE Electronic Library (IEL) |
subjects | Antiresonant capillary fiber Claddings Deformation Engineering Sciences Fabry-Perot fast Fourier transform hollow core fiber interferometer Monitoring optical fiber sensor Optical fiber sensors Optical fibers Optical interferometry phase tracking Physics reflectance Sensitivity |
title | Study of In-Line Capillary Fiber Sensor for Uniaxial Transverse Deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20In-Line%20Capillary%20Fiber%20Sensor%20for%20Uniaxial%20Transverse%20Deformation&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Sanchez-Gonzalez,%20Arturo&rft.date=2024-09-15&rft.volume=42&rft.issue=18&rft.spage=6351&rft.epage=6359&rft.pages=6351-6359&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3438933&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04815033v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10623909&rfr_iscdi=true |