Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer
Macroscopic x‐ray fluorescence imaging spectroscopy (MA‐XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA‐XRF and RIS r...
Gespeichert in:
Veröffentlicht in: | X-ray spectrometry 2024-11, Vol.53 (6), p.438-451 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | 6 |
container_start_page | 438 |
container_title | X-ray spectrometry |
container_volume | 53 |
creator | Almeida Nieto, Luís Manuel Gabrieli, Francesca Loon, Annelies Gonzalez, Victor Dik, Joris Van de Plas, Raf Alfeld, Matthias |
description | Macroscopic x‐ray fluorescence imaging spectroscopy (MA‐XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA‐XRF and RIS respectively, are particularly useful for the identification and mapping of pigments in easel paintings. While MA‐XRF has relatively established data processing methods based on modeling of the underlying physics, RIS data cannot be modeled with sufficient precision and its processing has considerable room for improvements. This work seeks to improve RIS data processing workflows in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel method that fits Gaussian profiles to pigment‐specific absorption features, and we compare its performance to MA‐XRF for the task of semi‐quantitative pigment mapping, evaluating their limits of detection (LODs) and the matrix effects that affect their signals. Two pigments are considered in this work, lead white and blue verditer, which are mapped in SWIR RIS using the first overtone of OH stretching of their primary compounds, hydrocerussite (Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respectively, and in MA‐XRF using the Pb‐L and Cu‐K fluorescence signals. The methods are evaluated using two sets of custom‐prepared paint samples, as well as a 16th‐century painting, discussing the identification, mapping, and semi‐quantitative analysis of the considered pigments. We found SWIR RIS to be a pigment‐specific method with a longer linear range but inferior LODs and penetration depth when compared to MA‐XRF, the latter is often not capable of discriminating between different pigments with identical elemental markers. We furthermore present a novel color scale that allows the simultaneous visualization of signals above and below a confidence limit. |
doi_str_mv | 10.1002/xrs.3394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04810650v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116032333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3614-380e62d97cdbd440c5e72c1477e7e8386beeb01079bd207c02b3896b4e4589a13</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi1EJZYFiUewxAUOKXbsTWJuqxVQpJWQaJG4WY4zu-vKiVNPsm1uPALPw-P0SXAI4oYvln99_mfmH0JecXbJGcvfPUS8FELJJ2TFmSozuRHqKVkxJlVW5bJ4Rp4j3jLGGedqRX7tQtub6DB0NBxoa2wM9OHxx89oJnrwY4iAFjoL1HQNjXDwYAczv11rjq47UuyTEgPa0KcfIdLhBBShdcnkbjTd4AYzuPNsYPyEDuc6vTu20A1IXUfBIHjaG5fQ7ojv6ZbiMDYTTS15MA29P7lhqV_7EegZYpOE-IJcHIxHePn3XpNvHz_c7K6y_ZdPn3fbfWZFwWUmKgZF3qjSNnUjJbMbKHPLZVlCCZWoihqgTnGUqm5yVlqW16JSRS1BbipluFiTt4vvyXjdxzR3nHQwTl9t93rWmKw4KzbsPLOvF7aP4W4EHPRtGGMaHLXgvGAiF-msyZuFSmEjplD_2XKm5y3qtEU9bzGh2YLeOw_Tfzn9_ev1H_43n1OjRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116032333</pqid></control><display><type>article</type><title>Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer</title><source>Access via Wiley Online Library</source><creator>Almeida Nieto, Luís Manuel ; Gabrieli, Francesca ; Loon, Annelies ; Gonzalez, Victor ; Dik, Joris ; Van de Plas, Raf ; Alfeld, Matthias</creator><creatorcontrib>Almeida Nieto, Luís Manuel ; Gabrieli, Francesca ; Loon, Annelies ; Gonzalez, Victor ; Dik, Joris ; Van de Plas, Raf ; Alfeld, Matthias</creatorcontrib><description>Macroscopic x‐ray fluorescence imaging spectroscopy (MA‐XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA‐XRF and RIS respectively, are particularly useful for the identification and mapping of pigments in easel paintings. While MA‐XRF has relatively established data processing methods based on modeling of the underlying physics, RIS data cannot be modeled with sufficient precision and its processing has considerable room for improvements. This work seeks to improve RIS data processing workflows in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel method that fits Gaussian profiles to pigment‐specific absorption features, and we compare its performance to MA‐XRF for the task of semi‐quantitative pigment mapping, evaluating their limits of detection (LODs) and the matrix effects that affect their signals. Two pigments are considered in this work, lead white and blue verditer, which are mapped in SWIR RIS using the first overtone of OH stretching of their primary compounds, hydrocerussite (Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respectively, and in MA‐XRF using the Pb‐L and Cu‐K fluorescence signals. The methods are evaluated using two sets of custom‐prepared paint samples, as well as a 16th‐century painting, discussing the identification, mapping, and semi‐quantitative analysis of the considered pigments. We found SWIR RIS to be a pigment‐specific method with a longer linear range but inferior LODs and penetration depth when compared to MA‐XRF, the latter is often not capable of discriminating between different pigments with identical elemental markers. We furthermore present a novel color scale that allows the simultaneous visualization of signals above and below a confidence limit.</description><identifier>ISSN: 0049-8246</identifier><identifier>EISSN: 1097-4539</identifier><identifier>DOI: 10.1002/xrs.3394</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Analytical chemistry ; chemical imaging ; Chemical Sciences ; Confidence limits ; Cultural heritage ; Cultural resources ; Data processing ; Fluorescence ; Imaging ; Infrared analysis ; macro x‐ray fluorescence ; Mapping ; MA‐XRF ; Penetration depth ; Performance evaluation ; pigment mapping ; Pigments ; Quantitative analysis ; Reflectance ; reflectance imaging spectroscopy ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis</subject><ispartof>X-ray spectrometry, 2024-11, Vol.53 (6), p.438-451</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3614-380e62d97cdbd440c5e72c1477e7e8386beeb01079bd207c02b3896b4e4589a13</citedby><cites>FETCH-LOGICAL-c3614-380e62d97cdbd440c5e72c1477e7e8386beeb01079bd207c02b3896b4e4589a13</cites><orcidid>0000-0001-7974-9564 ; 0000-0001-9950-7933 ; 0000-0003-2748-3906 ; 0000-0001-7510-8719 ; 0000-0003-3243-7664 ; 0000-0002-2232-7130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fxrs.3394$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fxrs.3394$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04810650$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida Nieto, Luís Manuel</creatorcontrib><creatorcontrib>Gabrieli, Francesca</creatorcontrib><creatorcontrib>Loon, Annelies</creatorcontrib><creatorcontrib>Gonzalez, Victor</creatorcontrib><creatorcontrib>Dik, Joris</creatorcontrib><creatorcontrib>Van de Plas, Raf</creatorcontrib><creatorcontrib>Alfeld, Matthias</creatorcontrib><title>Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer</title><title>X-ray spectrometry</title><description>Macroscopic x‐ray fluorescence imaging spectroscopy (MA‐XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA‐XRF and RIS respectively, are particularly useful for the identification and mapping of pigments in easel paintings. While MA‐XRF has relatively established data processing methods based on modeling of the underlying physics, RIS data cannot be modeled with sufficient precision and its processing has considerable room for improvements. This work seeks to improve RIS data processing workflows in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel method that fits Gaussian profiles to pigment‐specific absorption features, and we compare its performance to MA‐XRF for the task of semi‐quantitative pigment mapping, evaluating their limits of detection (LODs) and the matrix effects that affect their signals. Two pigments are considered in this work, lead white and blue verditer, which are mapped in SWIR RIS using the first overtone of OH stretching of their primary compounds, hydrocerussite (Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respectively, and in MA‐XRF using the Pb‐L and Cu‐K fluorescence signals. The methods are evaluated using two sets of custom‐prepared paint samples, as well as a 16th‐century painting, discussing the identification, mapping, and semi‐quantitative analysis of the considered pigments. We found SWIR RIS to be a pigment‐specific method with a longer linear range but inferior LODs and penetration depth when compared to MA‐XRF, the latter is often not capable of discriminating between different pigments with identical elemental markers. We furthermore present a novel color scale that allows the simultaneous visualization of signals above and below a confidence limit.</description><subject>Analytical chemistry</subject><subject>chemical imaging</subject><subject>Chemical Sciences</subject><subject>Confidence limits</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Data processing</subject><subject>Fluorescence</subject><subject>Imaging</subject><subject>Infrared analysis</subject><subject>macro x‐ray fluorescence</subject><subject>Mapping</subject><subject>MA‐XRF</subject><subject>Penetration depth</subject><subject>Performance evaluation</subject><subject>pigment mapping</subject><subject>Pigments</subject><subject>Quantitative analysis</subject><subject>Reflectance</subject><subject>reflectance imaging spectroscopy</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0049-8246</issn><issn>1097-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kcFu1DAQhi1EJZYFiUewxAUOKXbsTWJuqxVQpJWQaJG4WY4zu-vKiVNPsm1uPALPw-P0SXAI4oYvln99_mfmH0JecXbJGcvfPUS8FELJJ2TFmSozuRHqKVkxJlVW5bJ4Rp4j3jLGGedqRX7tQtub6DB0NBxoa2wM9OHxx89oJnrwY4iAFjoL1HQNjXDwYAczv11rjq47UuyTEgPa0KcfIdLhBBShdcnkbjTd4AYzuPNsYPyEDuc6vTu20A1IXUfBIHjaG5fQ7ojv6ZbiMDYTTS15MA29P7lhqV_7EegZYpOE-IJcHIxHePn3XpNvHz_c7K6y_ZdPn3fbfWZFwWUmKgZF3qjSNnUjJbMbKHPLZVlCCZWoihqgTnGUqm5yVlqW16JSRS1BbipluFiTt4vvyXjdxzR3nHQwTl9t93rWmKw4KzbsPLOvF7aP4W4EHPRtGGMaHLXgvGAiF-msyZuFSmEjplD_2XKm5y3qtEU9bzGh2YLeOw_Tfzn9_ev1H_43n1OjRQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Almeida Nieto, Luís Manuel</creator><creator>Gabrieli, Francesca</creator><creator>Loon, Annelies</creator><creator>Gonzalez, Victor</creator><creator>Dik, Joris</creator><creator>Van de Plas, Raf</creator><creator>Alfeld, Matthias</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7974-9564</orcidid><orcidid>https://orcid.org/0000-0001-9950-7933</orcidid><orcidid>https://orcid.org/0000-0003-2748-3906</orcidid><orcidid>https://orcid.org/0000-0001-7510-8719</orcidid><orcidid>https://orcid.org/0000-0003-3243-7664</orcidid><orcidid>https://orcid.org/0000-0002-2232-7130</orcidid></search><sort><creationdate>202411</creationdate><title>Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer</title><author>Almeida Nieto, Luís Manuel ; Gabrieli, Francesca ; Loon, Annelies ; Gonzalez, Victor ; Dik, Joris ; Van de Plas, Raf ; Alfeld, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3614-380e62d97cdbd440c5e72c1477e7e8386beeb01079bd207c02b3896b4e4589a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical chemistry</topic><topic>chemical imaging</topic><topic>Chemical Sciences</topic><topic>Confidence limits</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Data processing</topic><topic>Fluorescence</topic><topic>Imaging</topic><topic>Infrared analysis</topic><topic>macro x‐ray fluorescence</topic><topic>Mapping</topic><topic>MA‐XRF</topic><topic>Penetration depth</topic><topic>Performance evaluation</topic><topic>pigment mapping</topic><topic>Pigments</topic><topic>Quantitative analysis</topic><topic>Reflectance</topic><topic>reflectance imaging spectroscopy</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida Nieto, Luís Manuel</creatorcontrib><creatorcontrib>Gabrieli, Francesca</creatorcontrib><creatorcontrib>Loon, Annelies</creatorcontrib><creatorcontrib>Gonzalez, Victor</creatorcontrib><creatorcontrib>Dik, Joris</creatorcontrib><creatorcontrib>Van de Plas, Raf</creatorcontrib><creatorcontrib>Alfeld, Matthias</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>X-ray spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida Nieto, Luís Manuel</au><au>Gabrieli, Francesca</au><au>Loon, Annelies</au><au>Gonzalez, Victor</au><au>Dik, Joris</au><au>Van de Plas, Raf</au><au>Alfeld, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer</atitle><jtitle>X-ray spectrometry</jtitle><date>2024-11</date><risdate>2024</risdate><volume>53</volume><issue>6</issue><spage>438</spage><epage>451</epage><pages>438-451</pages><issn>0049-8246</issn><eissn>1097-4539</eissn><abstract>Macroscopic x‐ray fluorescence imaging spectroscopy (MA‐XRF) and reflectance imaging spectroscopy (RIS) are important tools in the analysis of cultural heritage objects, both for conservation and art historical research purposes. The elemental and molecular distributions provided by MA‐XRF and RIS respectively, are particularly useful for the identification and mapping of pigments in easel paintings. While MA‐XRF has relatively established data processing methods based on modeling of the underlying physics, RIS data cannot be modeled with sufficient precision and its processing has considerable room for improvements. This work seeks to improve RIS data processing workflows in the short wavelength infrared range (SWIR, 1000–2500 nm) with a novel method that fits Gaussian profiles to pigment‐specific absorption features, and we compare its performance to MA‐XRF for the task of semi‐quantitative pigment mapping, evaluating their limits of detection (LODs) and the matrix effects that affect their signals. Two pigments are considered in this work, lead white and blue verditer, which are mapped in SWIR RIS using the first overtone of OH stretching of their primary compounds, hydrocerussite (Pb3(CO3)2(OH)2) and azurite (Cu3(CO3)2(OH)2), at 1447 and 1497 nm respectively, and in MA‐XRF using the Pb‐L and Cu‐K fluorescence signals. The methods are evaluated using two sets of custom‐prepared paint samples, as well as a 16th‐century painting, discussing the identification, mapping, and semi‐quantitative analysis of the considered pigments. We found SWIR RIS to be a pigment‐specific method with a longer linear range but inferior LODs and penetration depth when compared to MA‐XRF, the latter is often not capable of discriminating between different pigments with identical elemental markers. We furthermore present a novel color scale that allows the simultaneous visualization of signals above and below a confidence limit.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/xrs.3394</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7974-9564</orcidid><orcidid>https://orcid.org/0000-0001-9950-7933</orcidid><orcidid>https://orcid.org/0000-0003-2748-3906</orcidid><orcidid>https://orcid.org/0000-0001-7510-8719</orcidid><orcidid>https://orcid.org/0000-0003-3243-7664</orcidid><orcidid>https://orcid.org/0000-0002-2232-7130</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-8246 |
ispartof | X-ray spectrometry, 2024-11, Vol.53 (6), p.438-451 |
issn | 0049-8246 1097-4539 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04810650v1 |
source | Access via Wiley Online Library |
subjects | Analytical chemistry chemical imaging Chemical Sciences Confidence limits Cultural heritage Cultural resources Data processing Fluorescence Imaging Infrared analysis macro x‐ray fluorescence Mapping MA‐XRF Penetration depth Performance evaluation pigment mapping Pigments Quantitative analysis Reflectance reflectance imaging spectroscopy Spectroscopic analysis Spectroscopy Spectrum analysis |
title | Comparison of macro x‐ray fluorescence and reflectance imaging spectroscopy for the semi‐quantitative analysis of pigments in easel paintings: A study on lead white and blue verditer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20macro%20x%E2%80%90ray%20fluorescence%20and%20reflectance%20imaging%20spectroscopy%20for%20the%20semi%E2%80%90quantitative%20analysis%20of%20pigments%20in%20easel%20paintings:%20A%20study%20on%20lead%20white%20and%20blue%20verditer&rft.jtitle=X-ray%20spectrometry&rft.au=Almeida%20Nieto,%20Lu%C3%ADs%20Manuel&rft.date=2024-11&rft.volume=53&rft.issue=6&rft.spage=438&rft.epage=451&rft.pages=438-451&rft.issn=0049-8246&rft.eissn=1097-4539&rft_id=info:doi/10.1002/xrs.3394&rft_dat=%3Cproquest_hal_p%3E3116032333%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116032333&rft_id=info:pmid/&rfr_iscdi=true |