Aerospace System Analysis and Optimization in Uncertainty

Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Brevault, Loïc
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 156
creator Brevault, Loïc
description Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty.Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.
doi_str_mv 10.1007/978-3-030-39126-3
format Book
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04809477v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6319919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1655x-3c8ffa00701a54187696aaab2579deb512ded9421d03df1a027efb5fbe0720ad3</originalsourceid><addsrcrecordid>eNpdkU9P3DAQxU1Lq8J2PwC3qJeKQ8qM7cTxcbuiUGklDqW9WpPEYQ1ZO8Qp7fbTN7tBIDiN9Ob3nuYPYycIXxBAnWlVpCIFAanQyPNUHLD5qIlR2QviDTtCLTDNC5G_fdU7fOrx4j07RtSokBdCfmDzGG8BgEsOUuMR0wvbh9hRZZMf2zjYTbLw1G6jiwn5OrnqBrdx_2hwwSfOJz99ZfuBnB-2H9m7htpo5491xn59O79eXqarq4vvy8UqJcyz7G8qqqJpaNwJkDKJhcp1TkQlz5SubZkhr22tJccaRN0gAVe2KbOmtKA4UC1m7HQKXlNrut5tqN-aQM5cLlZmp4EsQEulHvCZpXhn_8R1aIdoHlpbhnAXzYsjjezZxMYx1N_Y3kwUgtm9YEcbYUbe7A1m5_g8Obo-3P-2cTD74Mr6oR_nOP-6zAVqPd5-xj5NZEWRWued2QQfbnrq1tFkUivMpPgPmgeIhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6319919</pqid></control><display><type>book</type><title>Aerospace System Analysis and Optimization in Uncertainty</title><source>Springer Books</source><creator>Brevault, Loïc</creator><contributor>Balesdent, Mathieu ; Morio, Jérôme</contributor><creatorcontrib>Brevault, Loïc ; Balesdent, Mathieu ; Morio, Jérôme</creatorcontrib><description>Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty.Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.</description><edition>1st Edition 2020</edition><identifier>ISSN: 1931-6828</identifier><identifier>ISBN: 9783030391263</identifier><identifier>ISBN: 3030391264</identifier><identifier>ISBN: 9783030391256</identifier><identifier>ISBN: 3030391256</identifier><identifier>EISSN: 1931-6836</identifier><identifier>EISBN: 9783030391263</identifier><identifier>EISBN: 3030391264</identifier><identifier>DOI: 10.1007/978-3-030-39126-3</identifier><identifier>OCLC: 1191712834</identifier><language>eng</language><publisher>Cham: Springer Nature</publisher><subject>Aerospace engineering ; Aerospace Technology and Astronautics ; Algorithms ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Optimization ; Physics ; Probabilities &amp; applied mathematics ; Systems Theory, Control</subject><creationdate>2020</creationdate><tpages>489</tpages><format>489</format><rights>Springer Nature Switzerland AG 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Optimization and Its Applications</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-030-39126-3</thumbnail><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-39126-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,306,307,776,780,782,783,881,4034,27902,38232,42487</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04809477$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Balesdent, Mathieu</contributor><contributor>Morio, Jérôme</contributor><creatorcontrib>Brevault, Loïc</creatorcontrib><title>Aerospace System Analysis and Optimization in Uncertainty</title><description>Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty.Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.</description><subject>Aerospace engineering</subject><subject>Aerospace Technology and Astronautics</subject><subject>Algorithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Optimization</subject><subject>Physics</subject><subject>Probabilities &amp; applied mathematics</subject><subject>Systems Theory, Control</subject><issn>1931-6828</issn><issn>1931-6836</issn><isbn>9783030391263</isbn><isbn>3030391264</isbn><isbn>9783030391256</isbn><isbn>3030391256</isbn><isbn>9783030391263</isbn><isbn>3030391264</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2020</creationdate><recordtype>book</recordtype><sourceid>I4C</sourceid><recordid>eNpdkU9P3DAQxU1Lq8J2PwC3qJeKQ8qM7cTxcbuiUGklDqW9WpPEYQ1ZO8Qp7fbTN7tBIDiN9Ob3nuYPYycIXxBAnWlVpCIFAanQyPNUHLD5qIlR2QviDTtCLTDNC5G_fdU7fOrx4j07RtSokBdCfmDzGG8BgEsOUuMR0wvbh9hRZZMf2zjYTbLw1G6jiwn5OrnqBrdx_2hwwSfOJz99ZfuBnB-2H9m7htpo5491xn59O79eXqarq4vvy8UqJcyz7G8qqqJpaNwJkDKJhcp1TkQlz5SubZkhr22tJccaRN0gAVe2KbOmtKA4UC1m7HQKXlNrut5tqN-aQM5cLlZmp4EsQEulHvCZpXhn_8R1aIdoHlpbhnAXzYsjjezZxMYx1N_Y3kwUgtm9YEcbYUbe7A1m5_g8Obo-3P-2cTD74Mr6oR_nOP-6zAVqPd5-xj5NZEWRWued2QQfbnrq1tFkUivMpPgPmgeIhQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Brevault, Loïc</creator><general>Springer Nature</general><general>Springer International Publishing AG</general><general>Springer International Publishing</general><general>Springer</general><scope>I4C</scope><scope>1XC</scope></search><sort><creationdate>2020</creationdate><title>Aerospace System Analysis and Optimization in Uncertainty</title><author>Brevault, Loïc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1655x-3c8ffa00701a54187696aaab2579deb512ded9421d03df1a027efb5fbe0720ad3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Aerospace Technology and Astronautics</topic><topic>Algorithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Optimization</topic><topic>Physics</topic><topic>Probabilities &amp; applied mathematics</topic><topic>Systems Theory, Control</topic><toplevel>online_resources</toplevel><creatorcontrib>Brevault, Loïc</creatorcontrib><collection>Casalini Torrossa eBook Single Purchase</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brevault, Loïc</au><au>Balesdent, Mathieu</au><au>Morio, Jérôme</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Aerospace System Analysis and Optimization in Uncertainty</btitle><seriestitle>Springer Optimization and Its Applications</seriestitle><date>2020</date><risdate>2020</risdate><volume>156</volume><issn>1931-6828</issn><eissn>1931-6836</eissn><isbn>9783030391263</isbn><isbn>3030391264</isbn><isbn>9783030391256</isbn><isbn>3030391256</isbn><eisbn>9783030391263</eisbn><eisbn>3030391264</eisbn><abstract>Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty.Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.</abstract><cop>Cham</cop><pub>Springer Nature</pub><doi>10.1007/978-3-030-39126-3</doi><oclcid>1191712834</oclcid><tpages>489</tpages><edition>1st Edition 2020</edition></addata></record>
fulltext fulltext
identifier ISSN: 1931-6828
ispartof
issn 1931-6828
1931-6836
language eng
recordid cdi_hal_primary_oai_HAL_hal_04809477v1
source Springer Books
subjects Aerospace engineering
Aerospace Technology and Astronautics
Algorithms
Mathematics
Mathematics and Statistics
Numerical Analysis
Optimization
Physics
Probabilities & applied mathematics
Systems Theory, Control
title Aerospace System Analysis and Optimization in Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Aerospace%20System%20Analysis%20and%20Optimization%20in%20Uncertainty&rft.au=Brevault,%20Lo%C3%AFc&rft.date=2020&rft.volume=156&rft.issn=1931-6828&rft.eissn=1931-6836&rft.isbn=9783030391263&rft.isbn_list=3030391264&rft.isbn_list=9783030391256&rft.isbn_list=3030391256&rft_id=info:doi/10.1007/978-3-030-39126-3&rft_dat=%3Cproquest_hal_p%3EEBC6319919%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030391263&rft.eisbn_list=3030391264&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6319919&rft_id=info:pmid/&rfr_iscdi=true