Novel histograms kernels with structural properties

•We study the space where histograms lie.•We introduce some intuitive and desirable structural properties for measures.•A new similarity measure for comparing histograms is proposed.•We show that the proposed similarity is a conditionally positive definite kernel.•Experiments on face recognition and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2015-12, Vol.68, p.146-152
Hauptverfasser: Correa-Morris, Jyrko, Martínez-Díaz, Yoanna, Hernández, Noslen, Méndez-Vázquez, Heydi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 146
container_title Pattern recognition letters
container_volume 68
creator Correa-Morris, Jyrko
Martínez-Díaz, Yoanna
Hernández, Noslen
Méndez-Vázquez, Heydi
description •We study the space where histograms lie.•We introduce some intuitive and desirable structural properties for measures.•A new similarity measure for comparing histograms is proposed.•We show that the proposed similarity is a conditionally positive definite kernel.•Experiments on face recognition and image retrieval were done. This paper introduces a new similarity measure for comparing histograms, named Weighted Distribution Matching, which bases the comparison not only in the specific bin values but also in the shape of the histograms. It is proved that the proposed similarity is a conditionally positive definite kernel. The space where histograms lie is studied, and some intuitively desirable structural properties are introduced. The most representative measures of the state of art were compared on the basis of these properties. Experiments conducted on face recognition and image retrieval validate the proposal.
doi_str_mv 10.1016/j.patrec.2015.09.005
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04804108v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865515003025</els_id><sourcerecordid>S0167865515003025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-17545f99962baf073fd286433aff9d9ae5e583ff876ad27d17b34db0e95533a73</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKf_wEOvHlq_NEmTXIQxdBOGXvQcsvaLy-zWkmQT_70dFY-ePnh53he-h5BbCgUFWt1vi96mgHVRAhUF6AJAnJEJVbLMJeP8nEwGTOaqEuKSXMW4BYCKaTUh7KU7YpttfEzdR7C7mH1i2GMbsy-fNllM4VCnQ7Bt1oeux5A8xmty4Wwb8eb3Tsn70-PbfJmvXhfP89kqr0ulU06l4MJpratybR1I5ppSVZwx65xutEWBQjHnlKxsU8qGyjXjzRpQCzFAkk3J3bi7sa3pg9_Z8G06681ytjKnDLgCTkEd6cDyka1DF2NA91egYE6SzNaMksxJkgFtBklD7WGsDR_j0WMwsfa4r7HxA5pM0_n_B34AY2pxvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel histograms kernels with structural properties</title><source>Elsevier ScienceDirect Journals</source><creator>Correa-Morris, Jyrko ; Martínez-Díaz, Yoanna ; Hernández, Noslen ; Méndez-Vázquez, Heydi</creator><creatorcontrib>Correa-Morris, Jyrko ; Martínez-Díaz, Yoanna ; Hernández, Noslen ; Méndez-Vázquez, Heydi</creatorcontrib><description>•We study the space where histograms lie.•We introduce some intuitive and desirable structural properties for measures.•A new similarity measure for comparing histograms is proposed.•We show that the proposed similarity is a conditionally positive definite kernel.•Experiments on face recognition and image retrieval were done. This paper introduces a new similarity measure for comparing histograms, named Weighted Distribution Matching, which bases the comparison not only in the specific bin values but also in the shape of the histograms. It is proved that the proposed similarity is a conditionally positive definite kernel. The space where histograms lie is studied, and some intuitively desirable structural properties are introduced. The most representative measures of the state of art were compared on the basis of these properties. Experiments conducted on face recognition and image retrieval validate the proposal.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2015.09.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Face recognition ; Histogram similarity ; Image retrieval ; Kernel function ; Machine Learning ; Statistics</subject><ispartof>Pattern recognition letters, 2015-12, Vol.68, p.146-152</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-17545f99962baf073fd286433aff9d9ae5e583ff876ad27d17b34db0e95533a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2015.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04804108$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Correa-Morris, Jyrko</creatorcontrib><creatorcontrib>Martínez-Díaz, Yoanna</creatorcontrib><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Méndez-Vázquez, Heydi</creatorcontrib><title>Novel histograms kernels with structural properties</title><title>Pattern recognition letters</title><description>•We study the space where histograms lie.•We introduce some intuitive and desirable structural properties for measures.•A new similarity measure for comparing histograms is proposed.•We show that the proposed similarity is a conditionally positive definite kernel.•Experiments on face recognition and image retrieval were done. This paper introduces a new similarity measure for comparing histograms, named Weighted Distribution Matching, which bases the comparison not only in the specific bin values but also in the shape of the histograms. It is proved that the proposed similarity is a conditionally positive definite kernel. The space where histograms lie is studied, and some intuitively desirable structural properties are introduced. The most representative measures of the state of art were compared on the basis of these properties. Experiments conducted on face recognition and image retrieval validate the proposal.</description><subject>Face recognition</subject><subject>Histogram similarity</subject><subject>Image retrieval</subject><subject>Kernel function</subject><subject>Machine Learning</subject><subject>Statistics</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKf_wEOvHlq_NEmTXIQxdBOGXvQcsvaLy-zWkmQT_70dFY-ePnh53he-h5BbCgUFWt1vi96mgHVRAhUF6AJAnJEJVbLMJeP8nEwGTOaqEuKSXMW4BYCKaTUh7KU7YpttfEzdR7C7mH1i2GMbsy-fNllM4VCnQ7Bt1oeux5A8xmty4Wwb8eb3Tsn70-PbfJmvXhfP89kqr0ulU06l4MJpratybR1I5ppSVZwx65xutEWBQjHnlKxsU8qGyjXjzRpQCzFAkk3J3bi7sa3pg9_Z8G06681ytjKnDLgCTkEd6cDyka1DF2NA91egYE6SzNaMksxJkgFtBklD7WGsDR_j0WMwsfa4r7HxA5pM0_n_B34AY2pxvw</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Correa-Morris, Jyrko</creator><creator>Martínez-Díaz, Yoanna</creator><creator>Hernández, Noslen</creator><creator>Méndez-Vázquez, Heydi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20151215</creationdate><title>Novel histograms kernels with structural properties</title><author>Correa-Morris, Jyrko ; Martínez-Díaz, Yoanna ; Hernández, Noslen ; Méndez-Vázquez, Heydi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-17545f99962baf073fd286433aff9d9ae5e583ff876ad27d17b34db0e95533a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Face recognition</topic><topic>Histogram similarity</topic><topic>Image retrieval</topic><topic>Kernel function</topic><topic>Machine Learning</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa-Morris, Jyrko</creatorcontrib><creatorcontrib>Martínez-Díaz, Yoanna</creatorcontrib><creatorcontrib>Hernández, Noslen</creatorcontrib><creatorcontrib>Méndez-Vázquez, Heydi</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa-Morris, Jyrko</au><au>Martínez-Díaz, Yoanna</au><au>Hernández, Noslen</au><au>Méndez-Vázquez, Heydi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel histograms kernels with structural properties</atitle><jtitle>Pattern recognition letters</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>68</volume><spage>146</spage><epage>152</epage><pages>146-152</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We study the space where histograms lie.•We introduce some intuitive and desirable structural properties for measures.•A new similarity measure for comparing histograms is proposed.•We show that the proposed similarity is a conditionally positive definite kernel.•Experiments on face recognition and image retrieval were done. This paper introduces a new similarity measure for comparing histograms, named Weighted Distribution Matching, which bases the comparison not only in the specific bin values but also in the shape of the histograms. It is proved that the proposed similarity is a conditionally positive definite kernel. The space where histograms lie is studied, and some intuitively desirable structural properties are introduced. The most representative measures of the state of art were compared on the basis of these properties. Experiments conducted on face recognition and image retrieval validate the proposal.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2015.09.005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2015-12, Vol.68, p.146-152
issn 0167-8655
1872-7344
language eng
recordid cdi_hal_primary_oai_HAL_hal_04804108v1
source Elsevier ScienceDirect Journals
subjects Face recognition
Histogram similarity
Image retrieval
Kernel function
Machine Learning
Statistics
title Novel histograms kernels with structural properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20histograms%20kernels%20with%20structural%20properties&rft.jtitle=Pattern%20recognition%20letters&rft.au=Correa-Morris,%20Jyrko&rft.date=2015-12-15&rft.volume=68&rft.spage=146&rft.epage=152&rft.pages=146-152&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2015.09.005&rft_dat=%3Celsevier_hal_p%3ES0167865515003025%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865515003025&rfr_iscdi=true