Quantitative feasibility study of sequential neutron captures using intense lasers

Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that lase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2024-02, Vol.109 (2)
Hauptverfasser: Schaeffer, Derek, Bott, Archie F. A., Borghesi, Marco, Flippo, Kirk, Fox, William, Fuchs, Julien, Li, Chikang, Séguin, Fredrick, Park, Hye-Sook, Tzeferacos, Petros, Willingale, Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. C
container_volume 109
creator Schaeffer, Derek
Bott, Archie F. A.
Borghesi, Marco
Flippo, Kirk
Fox, William
Fuchs, Julien
Li, Chikang
Séguin, Fredrick
Park, Hye-Sook
Tzeferacos, Petros
Willingale, Louise
description Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achieve nucleosynthesis in the laboratory. In this scheme, the laser first generates an ultra-high-current, high-energy proton beam, which is subsequently converted into a dense neutron beam. Here we model, in a self-consistent manner, the transport of laser-accelerated protons through the neutron converter, the subsequent neutron generation and propagation, and finally the neutron capture reactions in a gold ( 197 Au) chosen as an illustrative example. Using the parameters of present-day available lasers, as well as of those foreseeable in the near future, we find that the final yield of the isotopes containing two more neutrons than the seed nuclei is negligible. Our investigation highlights that the areal density of the laser-driven neutron source is a critical quantity and that it would have to be increased by several orders of magnitude over the current state of the art in order to offer realistic prospects for laser-based generation of neutron-rich isotopes.
doi_str_mv 10.1103/RevModPhys.95.045007
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04798716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04798716v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04798716v13</originalsourceid><addsrcrecordid>eNqVij1LA0EQQBdRMGj-gcW0Fjlnc1_ZUkRJYUCD_TExc2Zk3Ys7uwf371UQe6v3eDxjriwW1mJ5s-VxM-yfDpMWri6wqhHbEzNbVo1bOOfK0z9f1edmrvqOiLZB11qcme1zppAkUZKRoWdS2YmXNIGmvJ9g6EH5M_P3Qx4C5xSHAK90TDmyQlYJbyAhcVAGT8pRL81ZT155_ssLc_1w_3K3XhzId8coHxSnbiDp1reP3U_DqnWr1jajLf_zfgHayU62</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative feasibility study of sequential neutron captures using intense lasers</title><source>American Physical Society Journals</source><creator>Schaeffer, Derek ; Bott, Archie F. A. ; Borghesi, Marco ; Flippo, Kirk ; Fox, William ; Fuchs, Julien ; Li, Chikang ; Séguin, Fredrick ; Park, Hye-Sook ; Tzeferacos, Petros ; Willingale, Louise</creator><creatorcontrib>Schaeffer, Derek ; Bott, Archie F. A. ; Borghesi, Marco ; Flippo, Kirk ; Fox, William ; Fuchs, Julien ; Li, Chikang ; Séguin, Fredrick ; Park, Hye-Sook ; Tzeferacos, Petros ; Willingale, Louise</creatorcontrib><description>Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achieve nucleosynthesis in the laboratory. In this scheme, the laser first generates an ultra-high-current, high-energy proton beam, which is subsequently converted into a dense neutron beam. Here we model, in a self-consistent manner, the transport of laser-accelerated protons through the neutron converter, the subsequent neutron generation and propagation, and finally the neutron capture reactions in a gold ( 197 Au) chosen as an illustrative example. Using the parameters of present-day available lasers, as well as of those foreseeable in the near future, we find that the final yield of the isotopes containing two more neutrons than the seed nuclei is negligible. Our investigation highlights that the areal density of the laser-driven neutron source is a critical quantity and that it would have to be increased by several orders of magnitude over the current state of the art in order to offer realistic prospects for laser-based generation of neutron-rich isotopes.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/RevModPhys.95.045007</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Physics</subject><ispartof>Physical review. C, 2024-02, Vol.109 (2)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8285-8275 ; 0000-0001-9765-0787 ; 0000-0003-1675-5910 ; 0000-0002-6919-4881 ; 0000-0001-6289-858X ; 0000-0001-8071-3083 ; 0000-0002-4752-5141 ; 0000-0003-4304-0339 ; 0000-0002-4752-5141 ; 0000-0002-8285-8275 ; 0000-0001-9765-0787 ; 0000-0002-6919-4881 ; 0000-0001-8071-3083 ; 0000-0003-1675-5910 ; 0000-0001-6289-858X ; 0000-0003-4304-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04798716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaeffer, Derek</creatorcontrib><creatorcontrib>Bott, Archie F. A.</creatorcontrib><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Flippo, Kirk</creatorcontrib><creatorcontrib>Fox, William</creatorcontrib><creatorcontrib>Fuchs, Julien</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Séguin, Fredrick</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Willingale, Louise</creatorcontrib><title>Quantitative feasibility study of sequential neutron captures using intense lasers</title><title>Physical review. C</title><description>Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achieve nucleosynthesis in the laboratory. In this scheme, the laser first generates an ultra-high-current, high-energy proton beam, which is subsequently converted into a dense neutron beam. Here we model, in a self-consistent manner, the transport of laser-accelerated protons through the neutron converter, the subsequent neutron generation and propagation, and finally the neutron capture reactions in a gold ( 197 Au) chosen as an illustrative example. Using the parameters of present-day available lasers, as well as of those foreseeable in the near future, we find that the final yield of the isotopes containing two more neutrons than the seed nuclei is negligible. Our investigation highlights that the areal density of the laser-driven neutron source is a critical quantity and that it would have to be increased by several orders of magnitude over the current state of the art in order to offer realistic prospects for laser-based generation of neutron-rich isotopes.</description><subject>Physics</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVij1LA0EQQBdRMGj-gcW0Fjlnc1_ZUkRJYUCD_TExc2Zk3Ys7uwf371UQe6v3eDxjriwW1mJ5s-VxM-yfDpMWri6wqhHbEzNbVo1bOOfK0z9f1edmrvqOiLZB11qcme1zppAkUZKRoWdS2YmXNIGmvJ9g6EH5M_P3Qx4C5xSHAK90TDmyQlYJbyAhcVAGT8pRL81ZT155_ssLc_1w_3K3XhzId8coHxSnbiDp1reP3U_DqnWr1jajLf_zfgHayU62</recordid><startdate>20240214</startdate><enddate>20240214</enddate><creator>Schaeffer, Derek</creator><creator>Bott, Archie F. A.</creator><creator>Borghesi, Marco</creator><creator>Flippo, Kirk</creator><creator>Fox, William</creator><creator>Fuchs, Julien</creator><creator>Li, Chikang</creator><creator>Séguin, Fredrick</creator><creator>Park, Hye-Sook</creator><creator>Tzeferacos, Petros</creator><creator>Willingale, Louise</creator><general>American Physical Society</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8285-8275</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0003-1675-5910</orcidid><orcidid>https://orcid.org/0000-0002-6919-4881</orcidid><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0001-8071-3083</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0003-4304-0339</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0002-8285-8275</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0002-6919-4881</orcidid><orcidid>https://orcid.org/0000-0001-8071-3083</orcidid><orcidid>https://orcid.org/0000-0003-1675-5910</orcidid><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0003-4304-0339</orcidid></search><sort><creationdate>20240214</creationdate><title>Quantitative feasibility study of sequential neutron captures using intense lasers</title><author>Schaeffer, Derek ; Bott, Archie F. A. ; Borghesi, Marco ; Flippo, Kirk ; Fox, William ; Fuchs, Julien ; Li, Chikang ; Séguin, Fredrick ; Park, Hye-Sook ; Tzeferacos, Petros ; Willingale, Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04798716v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaeffer, Derek</creatorcontrib><creatorcontrib>Bott, Archie F. A.</creatorcontrib><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Flippo, Kirk</creatorcontrib><creatorcontrib>Fox, William</creatorcontrib><creatorcontrib>Fuchs, Julien</creatorcontrib><creatorcontrib>Li, Chikang</creatorcontrib><creatorcontrib>Séguin, Fredrick</creatorcontrib><creatorcontrib>Park, Hye-Sook</creatorcontrib><creatorcontrib>Tzeferacos, Petros</creatorcontrib><creatorcontrib>Willingale, Louise</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaeffer, Derek</au><au>Bott, Archie F. A.</au><au>Borghesi, Marco</au><au>Flippo, Kirk</au><au>Fox, William</au><au>Fuchs, Julien</au><au>Li, Chikang</au><au>Séguin, Fredrick</au><au>Park, Hye-Sook</au><au>Tzeferacos, Petros</au><au>Willingale, Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative feasibility study of sequential neutron captures using intense lasers</atitle><jtitle>Physical review. C</jtitle><date>2024-02-14</date><risdate>2024</risdate><volume>109</volume><issue>2</issue><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>Deciphering the conditions under which neutron captures occur in the Universe to synthesize heavy elements is an endeavour pursued since the 1950s, but that has proven elusive up to now due to the experimental difficulty of generating the extreme neutron fluxes required. It has been evoked that laser-driven (pulsed) neutron sources could produce neutron beams with characteristics suitable to achieve nucleosynthesis in the laboratory. In this scheme, the laser first generates an ultra-high-current, high-energy proton beam, which is subsequently converted into a dense neutron beam. Here we model, in a self-consistent manner, the transport of laser-accelerated protons through the neutron converter, the subsequent neutron generation and propagation, and finally the neutron capture reactions in a gold ( 197 Au) chosen as an illustrative example. Using the parameters of present-day available lasers, as well as of those foreseeable in the near future, we find that the final yield of the isotopes containing two more neutrons than the seed nuclei is negligible. Our investigation highlights that the areal density of the laser-driven neutron source is a critical quantity and that it would have to be increased by several orders of magnitude over the current state of the art in order to offer realistic prospects for laser-based generation of neutron-rich isotopes.</abstract><pub>American Physical Society</pub><doi>10.1103/RevModPhys.95.045007</doi><orcidid>https://orcid.org/0000-0002-8285-8275</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0003-1675-5910</orcidid><orcidid>https://orcid.org/0000-0002-6919-4881</orcidid><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0001-8071-3083</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0003-4304-0339</orcidid><orcidid>https://orcid.org/0000-0002-4752-5141</orcidid><orcidid>https://orcid.org/0000-0002-8285-8275</orcidid><orcidid>https://orcid.org/0000-0001-9765-0787</orcidid><orcidid>https://orcid.org/0000-0002-6919-4881</orcidid><orcidid>https://orcid.org/0000-0001-8071-3083</orcidid><orcidid>https://orcid.org/0000-0003-1675-5910</orcidid><orcidid>https://orcid.org/0000-0001-6289-858X</orcidid><orcidid>https://orcid.org/0000-0003-4304-0339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2024-02, Vol.109 (2)
issn 2469-9985
2469-9993
language eng
recordid cdi_hal_primary_oai_HAL_hal_04798716v1
source American Physical Society Journals
subjects Physics
title Quantitative feasibility study of sequential neutron captures using intense lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20feasibility%20study%20of%20sequential%20neutron%20captures%20using%20intense%20lasers&rft.jtitle=Physical%20review.%20C&rft.au=Schaeffer,%20Derek&rft.date=2024-02-14&rft.volume=109&rft.issue=2&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/RevModPhys.95.045007&rft_dat=%3Chal%3Eoai_HAL_hal_04798716v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true