Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers

We report on the design, fabrication, and characterization of the first photonic crystal (PhC)-based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bott...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro and nanostructures (2022) 2024-01, Vol.185
Hauptverfasser: Ndiaye, Amade, Ghazouani, Ahlem, Sommer, Romain, Vermande, Elisa, Di Nardo, Christine, Seassal, Christian, Drouard, Emmanuel, Jany, Christophe, Ben Bakir, Badhise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Micro and nanostructures (2022)
container_volume 185
creator Ndiaye, Amade
Ghazouani, Ahlem
Sommer, Romain
Vermande, Elisa
Di Nardo, Christine
Seassal, Christian
Drouard, Emmanuel
Jany, Christophe
Ben Bakir, Badhise
description We report on the design, fabrication, and characterization of the first photonic crystal (PhC)-based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO2) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proof-of-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.
doi_str_mv 10.1016/j.micrna.2023.207721
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04798379v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04798379v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04798379v13</originalsourceid><addsrcrecordid>eNqVTctKAzEUDaJgsf0DF3frImMe2lh3xQcdcCMVt0Mc0s4tmWTMY6S_4FebARdu3Zw3HEIuOas448vrQ9VjG5yuBBOygFKCn5CZUEpSxoU8_aPPySLGA2NMiuKWtzPy_Zp1RCofodPBmRjR7cHvYMSIH9aAxX2XAB2YHks5Gqjrmr6Dd7BFmJ59TCG3KQcT72E9DBZbnbD0yUOfbcLBGvqZtUu5p1_GWmi99aGgG02I09LqY1FzcrbTNprFL1-Qq-ent4cN7bRthoC9DsfGa2w265dmytiNWt1JtRq5_M_2B9ryYZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers</title><source>Alma/SFX Local Collection</source><creator>Ndiaye, Amade ; Ghazouani, Ahlem ; Sommer, Romain ; Vermande, Elisa ; Di Nardo, Christine ; Seassal, Christian ; Drouard, Emmanuel ; Jany, Christophe ; Ben Bakir, Badhise</creator><creatorcontrib>Ndiaye, Amade ; Ghazouani, Ahlem ; Sommer, Romain ; Vermande, Elisa ; Di Nardo, Christine ; Seassal, Christian ; Drouard, Emmanuel ; Jany, Christophe ; Ben Bakir, Badhise</creatorcontrib><description>We report on the design, fabrication, and characterization of the first photonic crystal (PhC)-based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO2) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proof-of-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.</description><identifier>ISSN: 2773-0123</identifier><identifier>EISSN: 2773-0123</identifier><identifier>DOI: 10.1016/j.micrna.2023.207721</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Engineering Sciences</subject><ispartof>Micro and nanostructures (2022), 2024-01, Vol.185</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0738-3521 ; 0000-0002-3856-9089 ; 0000-0002-0738-3521 ; 0000-0002-3856-9089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04798379$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ndiaye, Amade</creatorcontrib><creatorcontrib>Ghazouani, Ahlem</creatorcontrib><creatorcontrib>Sommer, Romain</creatorcontrib><creatorcontrib>Vermande, Elisa</creatorcontrib><creatorcontrib>Di Nardo, Christine</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Drouard, Emmanuel</creatorcontrib><creatorcontrib>Jany, Christophe</creatorcontrib><creatorcontrib>Ben Bakir, Badhise</creatorcontrib><title>Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers</title><title>Micro and nanostructures (2022)</title><description>We report on the design, fabrication, and characterization of the first photonic crystal (PhC)-based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO2) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proof-of-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.</description><subject>Engineering Sciences</subject><issn>2773-0123</issn><issn>2773-0123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVTctKAzEUDaJgsf0DF3frImMe2lh3xQcdcCMVt0Mc0s4tmWTMY6S_4FebARdu3Zw3HEIuOas448vrQ9VjG5yuBBOygFKCn5CZUEpSxoU8_aPPySLGA2NMiuKWtzPy_Zp1RCofodPBmRjR7cHvYMSIH9aAxX2XAB2YHks5Gqjrmr6Dd7BFmJ59TCG3KQcT72E9DBZbnbD0yUOfbcLBGvqZtUu5p1_GWmi99aGgG02I09LqY1FzcrbTNprFL1-Qq-ent4cN7bRthoC9DsfGa2w265dmytiNWt1JtRq5_M_2B9ryYZw</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ndiaye, Amade</creator><creator>Ghazouani, Ahlem</creator><creator>Sommer, Romain</creator><creator>Vermande, Elisa</creator><creator>Di Nardo, Christine</creator><creator>Seassal, Christian</creator><creator>Drouard, Emmanuel</creator><creator>Jany, Christophe</creator><creator>Ben Bakir, Badhise</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0738-3521</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0002-0738-3521</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid></search><sort><creationdate>202401</creationdate><title>Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers</title><author>Ndiaye, Amade ; Ghazouani, Ahlem ; Sommer, Romain ; Vermande, Elisa ; Di Nardo, Christine ; Seassal, Christian ; Drouard, Emmanuel ; Jany, Christophe ; Ben Bakir, Badhise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04798379v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndiaye, Amade</creatorcontrib><creatorcontrib>Ghazouani, Ahlem</creatorcontrib><creatorcontrib>Sommer, Romain</creatorcontrib><creatorcontrib>Vermande, Elisa</creatorcontrib><creatorcontrib>Di Nardo, Christine</creatorcontrib><creatorcontrib>Seassal, Christian</creatorcontrib><creatorcontrib>Drouard, Emmanuel</creatorcontrib><creatorcontrib>Jany, Christophe</creatorcontrib><creatorcontrib>Ben Bakir, Badhise</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Micro and nanostructures (2022)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndiaye, Amade</au><au>Ghazouani, Ahlem</au><au>Sommer, Romain</au><au>Vermande, Elisa</au><au>Di Nardo, Christine</au><au>Seassal, Christian</au><au>Drouard, Emmanuel</au><au>Jany, Christophe</au><au>Ben Bakir, Badhise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers</atitle><jtitle>Micro and nanostructures (2022)</jtitle><date>2024-01</date><risdate>2024</risdate><volume>185</volume><issn>2773-0123</issn><eissn>2773-0123</eissn><abstract>We report on the design, fabrication, and characterization of the first photonic crystal (PhC)-based red multiple-quantum-well (MQW) color converters fully optimized for augmented reality (AR) microdisplays through a quasi-3D light harnessing principle. This principle leverages an aluminum (Al) bottom reflector and a silicon dioxide (SiO2) gap to harness the bottom-emitted light, along with copper (Cu) lateral mirrors and a silicon nitride (SiN) phase-matcher for Bloch-mode replication. These structures were designed using 3D-FDTD simulations. As a proof-of-principle, we fabricated corresponding devices that exhibit promising characteristics, including record light extraction efficiencies over 40 % for 4 μm pixels and directional emission patterns. Time-resolved photoluminescence (TRPL) analyses, along with a four-wave intensity model developed in this work, indicate that there is still room for improvement. We believe that the guidelines established in this study could pave the way for the use of MQW color converters in the next generation of very bright, high-resolution RGB microdisplays for AR glasses and beyond.</abstract><pub>Elsevier</pub><doi>10.1016/j.micrna.2023.207721</doi><orcidid>https://orcid.org/0000-0002-0738-3521</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><orcidid>https://orcid.org/0000-0002-0738-3521</orcidid><orcidid>https://orcid.org/0000-0002-3856-9089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2773-0123
ispartof Micro and nanostructures (2022), 2024-01, Vol.185
issn 2773-0123
2773-0123
language eng
recordid cdi_hal_primary_oai_HAL_hal_04798379v1
source Alma/SFX Local Collection
subjects Engineering Sciences
title Quasi-3D harnessing of visible light in emissive III-V on Si microstructures: Application to multiple-quantum-well color conversion layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-3D%20harnessing%20of%20visible%20light%20in%20emissive%20III-V%20on%20Si%20microstructures:%20Application%20to%20multiple-quantum-well%20color%20conversion%20layers&rft.jtitle=Micro%20and%20nanostructures%20(2022)&rft.au=Ndiaye,%20Amade&rft.date=2024-01&rft.volume=185&rft.issn=2773-0123&rft.eissn=2773-0123&rft_id=info:doi/10.1016/j.micrna.2023.207721&rft_dat=%3Chal%3Eoai_HAL_hal_04798379v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true