Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions

Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2024-05, Vol.31 (2)
Hauptverfasser: Arman, Andrii, Bondarenko, Andriy, Prymak, Andriy, Radchenko, Danylo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 31
creator Arman, Andrii
Bondarenko, Andriy
Prymak, Andriy
Radchenko, Danylo
description Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ based on sublattice coloring schemes that establish the following new bounds: $\chi(\mathbb{E}^5)\le 140$, $\chi(\mathbb{E}^n)\le 7^{n/2}$ for $n\in\{6,8,24\}$, $\chi(\mathbb{E}^7)\le 1372$, $\chi(\mathbb{E}^{9})\leq 17253$, and $\chi(\mathbb{E}^n)\le 3^n$ for all $n\le 38$ and $n\in\{48,49\}$. 
doi_str_mv 10.37236/11794
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04789024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04789024v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c974-e082f38cba2a78b8278f3f2f977e68af9373572a22ea983ee6de3136956250313</originalsourceid><addsrcrecordid>eNpNUE1LwzAADaLgnPobchiCh2o-2nwcZzedUPQyb2JIu4RG1qQkThHxv9ttIp7e430dHgDnGF1RTii7xpjL_ACMMOI8E5Kww3_8GJyk9IoQJlIWIzB76nsT4U3Y-FWCwcOyjaHTb66BD5uuHqxg4eR5UNq6_pp_v_gJdB5W4QPOXGd8csGnU3Bk9TqZs18cg-XtfFkusurx7r6cVlkjeZ4ZJIiloqk10VzUgnBhqSVWcm6Y0FZSTgtONCFGS0GNYStDMWWyYKRAAxuDy_1sq9eqj67T8VMF7dRiWqmthnIuJCL5-zZ7sc82MaQUjf0rYKR2N6ndTfQHuyNWyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Arman, Andrii ; Bondarenko, Andriy ; Prymak, Andriy ; Radchenko, Danylo</creator><creatorcontrib>Arman, Andrii ; Bondarenko, Andriy ; Prymak, Andriy ; Radchenko, Danylo</creatorcontrib><description>Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ based on sublattice coloring schemes that establish the following new bounds: $\chi(\mathbb{E}^5)\le 140$, $\chi(\mathbb{E}^n)\le 7^{n/2}$ for $n\in\{6,8,24\}$, $\chi(\mathbb{E}^7)\le 1372$, $\chi(\mathbb{E}^{9})\leq 17253$, and $\chi(\mathbb{E}^n)\le 3^n$ for all $n\le 38$ and $n\in\{48,49\}$. </description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/11794</identifier><language>eng</language><publisher>Open Journal Systems</publisher><subject>Combinatorics ; Mathematics ; Metric Geometry</subject><ispartof>The Electronic journal of combinatorics, 2024-05, Vol.31 (2)</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1457-6214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04789024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arman, Andrii</creatorcontrib><creatorcontrib>Bondarenko, Andriy</creatorcontrib><creatorcontrib>Prymak, Andriy</creatorcontrib><creatorcontrib>Radchenko, Danylo</creatorcontrib><title>Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions</title><title>The Electronic journal of combinatorics</title><description>Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ based on sublattice coloring schemes that establish the following new bounds: $\chi(\mathbb{E}^5)\le 140$, $\chi(\mathbb{E}^n)\le 7^{n/2}$ for $n\in\{6,8,24\}$, $\chi(\mathbb{E}^7)\le 1372$, $\chi(\mathbb{E}^{9})\leq 17253$, and $\chi(\mathbb{E}^n)\le 3^n$ for all $n\le 38$ and $n\in\{48,49\}$. </description><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LwzAADaLgnPobchiCh2o-2nwcZzedUPQyb2JIu4RG1qQkThHxv9ttIp7e430dHgDnGF1RTii7xpjL_ACMMOI8E5Kww3_8GJyk9IoQJlIWIzB76nsT4U3Y-FWCwcOyjaHTb66BD5uuHqxg4eR5UNq6_pp_v_gJdB5W4QPOXGd8csGnU3Bk9TqZs18cg-XtfFkusurx7r6cVlkjeZ4ZJIiloqk10VzUgnBhqSVWcm6Y0FZSTgtONCFGS0GNYStDMWWyYKRAAxuDy_1sq9eqj67T8VMF7dRiWqmthnIuJCL5-zZ7sc82MaQUjf0rYKR2N6ndTfQHuyNWyQ</recordid><startdate>20240531</startdate><enddate>20240531</enddate><creator>Arman, Andrii</creator><creator>Bondarenko, Andriy</creator><creator>Prymak, Andriy</creator><creator>Radchenko, Danylo</creator><general>Open Journal Systems</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1457-6214</orcidid></search><sort><creationdate>20240531</creationdate><title>Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions</title><author>Arman, Andrii ; Bondarenko, Andriy ; Prymak, Andriy ; Radchenko, Danylo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c974-e082f38cba2a78b8278f3f2f977e68af9373572a22ea983ee6de3136956250313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arman, Andrii</creatorcontrib><creatorcontrib>Bondarenko, Andriy</creatorcontrib><creatorcontrib>Prymak, Andriy</creatorcontrib><creatorcontrib>Radchenko, Danylo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arman, Andrii</au><au>Bondarenko, Andriy</au><au>Prymak, Andriy</au><au>Radchenko, Danylo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2024-05-31</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Let $\chi(\mathbb{E}^n)$ denote the chromatic number of the Euclidean space $\mathbb{E}^n$, i.e., the smallest number of colors that can be used to color $\mathbb{E}^n$ so that no two points unit distance apart are of the same color. We present explicit constructions of colorings of $\mathbb{E}^n$ based on sublattice coloring schemes that establish the following new bounds: $\chi(\mathbb{E}^5)\le 140$, $\chi(\mathbb{E}^n)\le 7^{n/2}$ for $n\in\{6,8,24\}$, $\chi(\mathbb{E}^7)\le 1372$, $\chi(\mathbb{E}^{9})\leq 17253$, and $\chi(\mathbb{E}^n)\le 3^n$ for all $n\le 38$ and $n\in\{48,49\}$. </abstract><pub>Open Journal Systems</pub><doi>10.37236/11794</doi><orcidid>https://orcid.org/0000-0003-1457-6214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2024-05, Vol.31 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_hal_primary_oai_HAL_hal_04789024v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Combinatorics
Mathematics
Metric Geometry
title Upper Bounds on Chromatic Number of $\mathbb{E}^n$ in Low Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20on%20Chromatic%20Number%20of%20$%5Cmathbb%7BE%7D%5En$%20in%20Low%20Dimensions&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Arman,%20Andrii&rft.date=2024-05-31&rft.volume=31&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/11794&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04789024v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true