The linear stability of the Kazhikhov–Smagulov model
Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configurat...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, B, Fluids B, Fluids, 2024-07, Vol.106, p.116-123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | European journal of mechanics, B, Fluids |
container_volume | 106 |
creator | Jacques, C. Di Pierro, B. Buffat, M. |
description | Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability. |
doi_str_mv | 10.1016/j.euromechflu.2024.04.001 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04788218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754624000530</els_id><sourcerecordid>oai_HAL_hal_04788218v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-614dbc73838aa54f9fd0e0f09c67111e0e88f0c030c42f2c0bca9888e2694e843</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKvvsB497DrZTbPJsRS1YsGD9RzS7MRN3W0k2S7Uk-_gG_okbqmIR2FgYPi_H-Yj5JJCRoHy63WG2-BbNLVttlkOOctgGKBHZERFWaRlIeGYjEDKMi0njJ-SsxjXAMDygo8IX9aYNG6DOiSx0yvXuG6XeJt0w_1Bv9futfb918fnU6tfto3vk9ZX2JyTE6ubiBc_e0yeb2-Ws3m6eLy7n00XqWHAu5RTVq1MWYhCaD1hVtoKECxIw0tKKQIKYcFAAYblNjewMloKITDnkqFgxZhcHXpr3ai34Foddsprp-bThdrfgJVC5FT0dMjKQ9YEH2NA-wtQUHtZaq3-yFJ7WQOvBlkDOzuwODzTOwwqGocbg5ULaDpVefePlm_ja3kI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The linear stability of the Kazhikhov–Smagulov model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jacques, C. ; Di Pierro, B. ; Buffat, M.</creator><creatorcontrib>Jacques, C. ; Di Pierro, B. ; Buffat, M.</creatorcontrib><description>Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2024.04.001</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Fluid mechanics ; Instability ; Kazhikhov–Smagulov ; Mechanics ; Physics ; Shear flows ; Variable-density</subject><ispartof>European journal of mechanics, B, Fluids, 2024-07, Vol.106, p.116-123</ispartof><rights>2024 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-614dbc73838aa54f9fd0e0f09c67111e0e88f0c030c42f2c0bca9888e2694e843</citedby><cites>FETCH-LOGICAL-c406t-614dbc73838aa54f9fd0e0f09c67111e0e88f0c030c42f2c0bca9888e2694e843</cites><orcidid>0000-0001-9157-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechflu.2024.04.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04788218$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacques, C.</creatorcontrib><creatorcontrib>Di Pierro, B.</creatorcontrib><creatorcontrib>Buffat, M.</creatorcontrib><title>The linear stability of the Kazhikhov–Smagulov model</title><title>European journal of mechanics, B, Fluids</title><description>Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability.</description><subject>Fluid mechanics</subject><subject>Instability</subject><subject>Kazhikhov–Smagulov</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Shear flows</subject><subject>Variable-density</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKvvsB497DrZTbPJsRS1YsGD9RzS7MRN3W0k2S7Uk-_gG_okbqmIR2FgYPi_H-Yj5JJCRoHy63WG2-BbNLVttlkOOctgGKBHZERFWaRlIeGYjEDKMi0njJ-SsxjXAMDygo8IX9aYNG6DOiSx0yvXuG6XeJt0w_1Bv9futfb918fnU6tfto3vk9ZX2JyTE6ubiBc_e0yeb2-Ws3m6eLy7n00XqWHAu5RTVq1MWYhCaD1hVtoKECxIw0tKKQIKYcFAAYblNjewMloKITDnkqFgxZhcHXpr3ai34Foddsprp-bThdrfgJVC5FT0dMjKQ9YEH2NA-wtQUHtZaq3-yFJ7WQOvBlkDOzuwODzTOwwqGocbg5ULaDpVefePlm_ja3kI</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Jacques, C.</creator><creator>Di Pierro, B.</creator><creator>Buffat, M.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9157-8817</orcidid></search><sort><creationdate>202407</creationdate><title>The linear stability of the Kazhikhov–Smagulov model</title><author>Jacques, C. ; Di Pierro, B. ; Buffat, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-614dbc73838aa54f9fd0e0f09c67111e0e88f0c030c42f2c0bca9888e2694e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fluid mechanics</topic><topic>Instability</topic><topic>Kazhikhov–Smagulov</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Shear flows</topic><topic>Variable-density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacques, C.</creatorcontrib><creatorcontrib>Di Pierro, B.</creatorcontrib><creatorcontrib>Buffat, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacques, C.</au><au>Di Pierro, B.</au><au>Buffat, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The linear stability of the Kazhikhov–Smagulov model</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2024-07</date><risdate>2024</risdate><volume>106</volume><spage>116</spage><epage>123</epage><pages>116-123</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2024.04.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9157-8817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7546 |
ispartof | European journal of mechanics, B, Fluids, 2024-07, Vol.106, p.116-123 |
issn | 0997-7546 1873-7390 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04788218v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Fluid mechanics Instability Kazhikhov–Smagulov Mechanics Physics Shear flows Variable-density |
title | The linear stability of the Kazhikhov–Smagulov model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20linear%20stability%20of%20the%20Kazhikhov%E2%80%93Smagulov%20model&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Jacques,%20C.&rft.date=2024-07&rft.volume=106&rft.spage=116&rft.epage=123&rft.pages=116-123&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2024.04.001&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04788218v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0997754624000530&rfr_iscdi=true |