Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy

In this study, the evolution of microstructure and its correlation with the viscosity of CaO–SiO2-based melts, incorporating various Al2O3 additives, have been investigated by employing in situ high temperature Raman spectroscopy and viscosity model. Raman spectra of the melts were procured at 1823 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics international 2024-05, Vol.50 (10), p.16765-16774
Hauptverfasser: Tang, Xiaohui, You, Jinglin, Zhang, Fu, Canizarès, Aurélien, Bessada, Catherine, Zhang, Qingli, Wan, Songming, Lu, Liming, Tang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16774
container_issue 10
container_start_page 16765
container_title Ceramics international
container_volume 50
creator Tang, Xiaohui
You, Jinglin
Zhang, Fu
Canizarès, Aurélien
Bessada, Catherine
Zhang, Qingli
Wan, Songming
Lu, Liming
Tang, Kai
description In this study, the evolution of microstructure and its correlation with the viscosity of CaO–SiO2-based melts, incorporating various Al2O3 additives, have been investigated by employing in situ high temperature Raman spectroscopy and viscosity model. Raman spectra of the melts were procured at 1823 K by using in situ high temperature Raman spectroscopy. After considering the intricate influences of temperature and Raman scattering cross section (RSCS), the original Raman spectra of aluminosilicate melts underwent calibration. Subsequently, the distribution of microstructure species Qi (i = 0–4) was quantitatively performed through meticulous deconvolution of calibrated Raman spectra. The evolution of Qi species with the increasing Al2O3 content reveals a decrease in Q1 and Q2 species, while the fully polymerized Q4 experiences a continuous and significant growth. Concurrently, Q3 initially exhibits an upward trend followed by a subsequent decline. The Qi evolution culminates in an overall enhancement of the degree of polymerization. Viscosity was determined by utilizing a rigorously selected viscosity model, elucidating a consistent upward trajectory as Al2O3 content is incrementally added. Furthermore, a quantitative analysis of the relationship between viscosity and structure was conducted based on the average number of non-bridging oxygen per network-forming tetrahedron (NBO/T). The findings demonstrate a robust linear relationship between the logarithm of viscosity and NBO/T, thereby offering valuable insights for examining and predicting viscosity behavior of aluminosilicate systems.
doi_str_mv 10.1016/j.ceramint.2024.01.363
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04788065v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884224003900</els_id><sourcerecordid>S0272884224003900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f7c821b6bfa1c2d2b8336d4d29918e7dfa07156ddc236c0b0d821f15e994f0c23</originalsourceid><addsrcrecordid>eNqFkMtKAzEYhYMoWKuvINm6mDGXmUxmZylqhcKAt23I5NKmzI1kWujOd_ANfRJTqm5d_fDnfCf_OQBcY5RihNntJlXGy9Z1Y0oQyVKEU8roCZhgXtCEljk7BRNECpJwnpFzcBHCBkWwzNAE9O8uqD64cQ_bXpumcd0K9haOxnfS7-FcVl8fn7OGVDTOF1cR2JpmDFCG4MJoNKz30HUwOmzh2q3WkWyHeM-49QY-y1bGt8Go0ffxn2F_Cc6sbIK5-plT8PZw_zpfJMvq8Wk-WyaKZmxMbKE4wTWrrcSKaFJzSpnONClLzE2hrUQFzpnWilCmUI10lFucm7LMLIrLKbg5-q5lIwbv2hhG9NKJxWwpDjuUFZwjlu9w1LKjVsUjgzf2D8BIHCoWG_FbsThULBAWseII3h1BE5PsnPEiKGc6ZbTzMbLQvfvP4hv0e4tZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tang, Xiaohui ; You, Jinglin ; Zhang, Fu ; Canizarès, Aurélien ; Bessada, Catherine ; Zhang, Qingli ; Wan, Songming ; Lu, Liming ; Tang, Kai</creator><creatorcontrib>Tang, Xiaohui ; You, Jinglin ; Zhang, Fu ; Canizarès, Aurélien ; Bessada, Catherine ; Zhang, Qingli ; Wan, Songming ; Lu, Liming ; Tang, Kai</creatorcontrib><description>In this study, the evolution of microstructure and its correlation with the viscosity of CaO–SiO2-based melts, incorporating various Al2O3 additives, have been investigated by employing in situ high temperature Raman spectroscopy and viscosity model. Raman spectra of the melts were procured at 1823 K by using in situ high temperature Raman spectroscopy. After considering the intricate influences of temperature and Raman scattering cross section (RSCS), the original Raman spectra of aluminosilicate melts underwent calibration. Subsequently, the distribution of microstructure species Qi (i = 0–4) was quantitatively performed through meticulous deconvolution of calibrated Raman spectra. The evolution of Qi species with the increasing Al2O3 content reveals a decrease in Q1 and Q2 species, while the fully polymerized Q4 experiences a continuous and significant growth. Concurrently, Q3 initially exhibits an upward trend followed by a subsequent decline. The Qi evolution culminates in an overall enhancement of the degree of polymerization. Viscosity was determined by utilizing a rigorously selected viscosity model, elucidating a consistent upward trajectory as Al2O3 content is incrementally added. Furthermore, a quantitative analysis of the relationship between viscosity and structure was conducted based on the average number of non-bridging oxygen per network-forming tetrahedron (NBO/T). The findings demonstrate a robust linear relationship between the logarithm of viscosity and NBO/T, thereby offering valuable insights for examining and predicting viscosity behavior of aluminosilicate systems.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2024.01.363</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Calcium aluminosilicate melt ; Chemical Sciences ; In situ high temperature Raman spectroscopy ; Microstructure ; Viscosity model</subject><ispartof>Ceramics international, 2024-05, Vol.50 (10), p.16765-16774</ispartof><rights>2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f7c821b6bfa1c2d2b8336d4d29918e7dfa07156ddc236c0b0d821f15e994f0c23</citedby><cites>FETCH-LOGICAL-c346t-f7c821b6bfa1c2d2b8336d4d29918e7dfa07156ddc236c0b0d821f15e994f0c23</cites><orcidid>0000-0003-1154-6896 ; 0000-0002-8923-7914 ; 0000-0002-7727-243X ; 0000-0002-9580-3900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ceramint.2024.01.363$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04788065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xiaohui</creatorcontrib><creatorcontrib>You, Jinglin</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Canizarès, Aurélien</creatorcontrib><creatorcontrib>Bessada, Catherine</creatorcontrib><creatorcontrib>Zhang, Qingli</creatorcontrib><creatorcontrib>Wan, Songming</creatorcontrib><creatorcontrib>Lu, Liming</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><title>Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy</title><title>Ceramics international</title><description>In this study, the evolution of microstructure and its correlation with the viscosity of CaO–SiO2-based melts, incorporating various Al2O3 additives, have been investigated by employing in situ high temperature Raman spectroscopy and viscosity model. Raman spectra of the melts were procured at 1823 K by using in situ high temperature Raman spectroscopy. After considering the intricate influences of temperature and Raman scattering cross section (RSCS), the original Raman spectra of aluminosilicate melts underwent calibration. Subsequently, the distribution of microstructure species Qi (i = 0–4) was quantitatively performed through meticulous deconvolution of calibrated Raman spectra. The evolution of Qi species with the increasing Al2O3 content reveals a decrease in Q1 and Q2 species, while the fully polymerized Q4 experiences a continuous and significant growth. Concurrently, Q3 initially exhibits an upward trend followed by a subsequent decline. The Qi evolution culminates in an overall enhancement of the degree of polymerization. Viscosity was determined by utilizing a rigorously selected viscosity model, elucidating a consistent upward trajectory as Al2O3 content is incrementally added. Furthermore, a quantitative analysis of the relationship between viscosity and structure was conducted based on the average number of non-bridging oxygen per network-forming tetrahedron (NBO/T). The findings demonstrate a robust linear relationship between the logarithm of viscosity and NBO/T, thereby offering valuable insights for examining and predicting viscosity behavior of aluminosilicate systems.</description><subject>Calcium aluminosilicate melt</subject><subject>Chemical Sciences</subject><subject>In situ high temperature Raman spectroscopy</subject><subject>Microstructure</subject><subject>Viscosity model</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEYhYMoWKuvINm6mDGXmUxmZylqhcKAt23I5NKmzI1kWujOd_ANfRJTqm5d_fDnfCf_OQBcY5RihNntJlXGy9Z1Y0oQyVKEU8roCZhgXtCEljk7BRNECpJwnpFzcBHCBkWwzNAE9O8uqD64cQ_bXpumcd0K9haOxnfS7-FcVl8fn7OGVDTOF1cR2JpmDFCG4MJoNKz30HUwOmzh2q3WkWyHeM-49QY-y1bGt8Go0ffxn2F_Cc6sbIK5-plT8PZw_zpfJMvq8Wk-WyaKZmxMbKE4wTWrrcSKaFJzSpnONClLzE2hrUQFzpnWilCmUI10lFucm7LMLIrLKbg5-q5lIwbv2hhG9NKJxWwpDjuUFZwjlu9w1LKjVsUjgzf2D8BIHCoWG_FbsThULBAWseII3h1BE5PsnPEiKGc6ZbTzMbLQvfvP4hv0e4tZ</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Tang, Xiaohui</creator><creator>You, Jinglin</creator><creator>Zhang, Fu</creator><creator>Canizarès, Aurélien</creator><creator>Bessada, Catherine</creator><creator>Zhang, Qingli</creator><creator>Wan, Songming</creator><creator>Lu, Liming</creator><creator>Tang, Kai</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1154-6896</orcidid><orcidid>https://orcid.org/0000-0002-8923-7914</orcidid><orcidid>https://orcid.org/0000-0002-7727-243X</orcidid><orcidid>https://orcid.org/0000-0002-9580-3900</orcidid></search><sort><creationdate>20240515</creationdate><title>Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy</title><author>Tang, Xiaohui ; You, Jinglin ; Zhang, Fu ; Canizarès, Aurélien ; Bessada, Catherine ; Zhang, Qingli ; Wan, Songming ; Lu, Liming ; Tang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f7c821b6bfa1c2d2b8336d4d29918e7dfa07156ddc236c0b0d821f15e994f0c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calcium aluminosilicate melt</topic><topic>Chemical Sciences</topic><topic>In situ high temperature Raman spectroscopy</topic><topic>Microstructure</topic><topic>Viscosity model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xiaohui</creatorcontrib><creatorcontrib>You, Jinglin</creatorcontrib><creatorcontrib>Zhang, Fu</creatorcontrib><creatorcontrib>Canizarès, Aurélien</creatorcontrib><creatorcontrib>Bessada, Catherine</creatorcontrib><creatorcontrib>Zhang, Qingli</creatorcontrib><creatorcontrib>Wan, Songming</creatorcontrib><creatorcontrib>Lu, Liming</creatorcontrib><creatorcontrib>Tang, Kai</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xiaohui</au><au>You, Jinglin</au><au>Zhang, Fu</au><au>Canizarès, Aurélien</au><au>Bessada, Catherine</au><au>Zhang, Qingli</au><au>Wan, Songming</au><au>Lu, Liming</au><au>Tang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy</atitle><jtitle>Ceramics international</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>50</volume><issue>10</issue><spage>16765</spage><epage>16774</epage><pages>16765-16774</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>In this study, the evolution of microstructure and its correlation with the viscosity of CaO–SiO2-based melts, incorporating various Al2O3 additives, have been investigated by employing in situ high temperature Raman spectroscopy and viscosity model. Raman spectra of the melts were procured at 1823 K by using in situ high temperature Raman spectroscopy. After considering the intricate influences of temperature and Raman scattering cross section (RSCS), the original Raman spectra of aluminosilicate melts underwent calibration. Subsequently, the distribution of microstructure species Qi (i = 0–4) was quantitatively performed through meticulous deconvolution of calibrated Raman spectra. The evolution of Qi species with the increasing Al2O3 content reveals a decrease in Q1 and Q2 species, while the fully polymerized Q4 experiences a continuous and significant growth. Concurrently, Q3 initially exhibits an upward trend followed by a subsequent decline. The Qi evolution culminates in an overall enhancement of the degree of polymerization. Viscosity was determined by utilizing a rigorously selected viscosity model, elucidating a consistent upward trajectory as Al2O3 content is incrementally added. Furthermore, a quantitative analysis of the relationship between viscosity and structure was conducted based on the average number of non-bridging oxygen per network-forming tetrahedron (NBO/T). The findings demonstrate a robust linear relationship between the logarithm of viscosity and NBO/T, thereby offering valuable insights for examining and predicting viscosity behavior of aluminosilicate systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2024.01.363</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1154-6896</orcidid><orcidid>https://orcid.org/0000-0002-8923-7914</orcidid><orcidid>https://orcid.org/0000-0002-7727-243X</orcidid><orcidid>https://orcid.org/0000-0002-9580-3900</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-8842
ispartof Ceramics international, 2024-05, Vol.50 (10), p.16765-16774
issn 0272-8842
1873-3956
language eng
recordid cdi_hal_primary_oai_HAL_hal_04788065v1
source Elsevier ScienceDirect Journals Complete
subjects Calcium aluminosilicate melt
Chemical Sciences
In situ high temperature Raman spectroscopy
Microstructure
Viscosity model
title Viscosity modelling of ternary CaO–Al2O3–SiO2 melts assisted by in situ high temperature Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscosity%20modelling%20of%20ternary%20CaO%E2%80%93Al2O3%E2%80%93SiO2%20melts%20assisted%20by%20in%20situ%20high%20temperature%20Raman%20spectroscopy&rft.jtitle=Ceramics%20international&rft.au=Tang,%20Xiaohui&rft.date=2024-05-15&rft.volume=50&rft.issue=10&rft.spage=16765&rft.epage=16774&rft.pages=16765-16774&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2024.01.363&rft_dat=%3Celsevier_hal_p%3ES0272884224003900%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0272884224003900&rfr_iscdi=true