Evolutionary ecology of masting: mechanisms, models, and climate change
The importance of masting for ecosystem processes is well established; now we need to understand its evolutionary and physiological drivers.Synchronous interannual variation in reproduction is driven by a combination of environmental variation, weather cues, and resource dynamics. These three major...
Gespeichert in:
Veröffentlicht in: | Trends in ecology & evolution (Amsterdam) 2024-09, Vol.39 (9), p.851-862 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 862 |
---|---|
container_issue | 9 |
container_start_page | 851 |
container_title | Trends in ecology & evolution (Amsterdam) |
container_volume | 39 |
creator | Bogdziewicz, Michal Kelly, Dave Ascoli, Davide Caignard, Thomas Chianucci, Francesco Crone, Elizabeth E. Fleurot, Emilie Foest, Jessie J. Gratzer, Georg Hagiwara, Tomika Han, Qingmin Journé, Valentin Keurinck, Léa Kondrat, Katarzyna McClory, Ryan LaMontagne, Jalene M. Mundo, Ignacio A. Nussbaumer, Anita Oberklammer, Iris Ohno, Misuzu Pearse, Ian S. Pesendorfer, Mario B. Resente, Giulia Satake, Akiko Shibata, Mitsue Snell, Rebecca S. Szymkowiak, Jakub Touzot, Laura Zwolak, Rafal Zywiec, Magdalena Hacket-Pain, Andrew J. |
description | The importance of masting for ecosystem processes is well established; now we need to understand its evolutionary and physiological drivers.Synchronous interannual variation in reproduction is driven by a combination of environmental variation, weather cues, and resource dynamics. These three major masting drivers, which span both proximate and ultimate factors, are not mutually exclusive and likely apply in all species, with varying importance.Masting improves plant fitness via well-documented density-dependent processes, but the costs of masting remain stubbornly understudied, preventing the integration required to fully understand masting variation across species.Improved understanding of masting drivers and links between weather variation and seed production will improve conservation outcomes, ecological forecasts, and guide management under climate change.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding |
doi_str_mv | 10.1016/j.tree.2024.05.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04778439v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169534724001174</els_id><sourcerecordid>3153618292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8110bef0dce4a64577d5afc5dd3d7e73e65b3397d9acb7ba41d79e9606aec2133</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhD3BAOYJEgr8_UC9VVVqklbjA2XLsydarJC52dqX99zja0iPCl5HsZ16P5kHoPcEdwUR-2XdLBugoprzDosNYvkAbohVtNdPsJdpUyLSCcXWB3pSyx_UYbl6jC6a1pEzoDbq7PabxsMQ0u3xqwKcx7U5NGprJlSXOu6_NBP7BzbFM5XMzpQBjrW4OjR_j5BZo1tcdvEWvBjcWePdUL9Gvb7c_b-7b7Y-77zfX29ZzSZdWE4J7GHDwwJ3kQqkg3OBFCCwoUAyk6BkzKhjne9U7ToIyYCSWDjwljF2iT-fcBzfax1xHyCebXLT311u73mGulObMHEllP57Zx5x-H6AsdorFwzi6GdKhWEYEk0RTQ_8Draur30tTUXpGfU6lZBiexyDYrl7s3q5e7OrFYmGrl9r04Sn_0E8Qnlv-iqjA1Rmo-4VjhGyLjzB7CDGDX2xI8V_5fwDPzJ16</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100913369</pqid></control><display><type>article</type><title>Evolutionary ecology of masting: mechanisms, models, and climate change</title><source>Elsevier ScienceDirect Journals</source><creator>Bogdziewicz, Michal ; Kelly, Dave ; Ascoli, Davide ; Caignard, Thomas ; Chianucci, Francesco ; Crone, Elizabeth E. ; Fleurot, Emilie ; Foest, Jessie J. ; Gratzer, Georg ; Hagiwara, Tomika ; Han, Qingmin ; Journé, Valentin ; Keurinck, Léa ; Kondrat, Katarzyna ; McClory, Ryan ; LaMontagne, Jalene M. ; Mundo, Ignacio A. ; Nussbaumer, Anita ; Oberklammer, Iris ; Ohno, Misuzu ; Pearse, Ian S. ; Pesendorfer, Mario B. ; Resente, Giulia ; Satake, Akiko ; Shibata, Mitsue ; Snell, Rebecca S. ; Szymkowiak, Jakub ; Touzot, Laura ; Zwolak, Rafal ; Zywiec, Magdalena ; Hacket-Pain, Andrew J.</creator><creatorcontrib>Bogdziewicz, Michal ; Kelly, Dave ; Ascoli, Davide ; Caignard, Thomas ; Chianucci, Francesco ; Crone, Elizabeth E. ; Fleurot, Emilie ; Foest, Jessie J. ; Gratzer, Georg ; Hagiwara, Tomika ; Han, Qingmin ; Journé, Valentin ; Keurinck, Léa ; Kondrat, Katarzyna ; McClory, Ryan ; LaMontagne, Jalene M. ; Mundo, Ignacio A. ; Nussbaumer, Anita ; Oberklammer, Iris ; Ohno, Misuzu ; Pearse, Ian S. ; Pesendorfer, Mario B. ; Resente, Giulia ; Satake, Akiko ; Shibata, Mitsue ; Snell, Rebecca S. ; Szymkowiak, Jakub ; Touzot, Laura ; Zwolak, Rafal ; Zywiec, Magdalena ; Hacket-Pain, Andrew J.</creatorcontrib><description>The importance of masting for ecosystem processes is well established; now we need to understand its evolutionary and physiological drivers.Synchronous interannual variation in reproduction is driven by a combination of environmental variation, weather cues, and resource dynamics. These three major masting drivers, which span both proximate and ultimate factors, are not mutually exclusive and likely apply in all species, with varying importance.Masting improves plant fitness via well-documented density-dependent processes, but the costs of masting remain stubbornly understudied, preventing the integration required to fully understand masting variation across species.Improved understanding of masting drivers and links between weather variation and seed production will improve conservation outcomes, ecological forecasts, and guide management under climate change.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.</description><identifier>ISSN: 0169-5347</identifier><identifier>ISSN: 1872-8383</identifier><identifier>EISSN: 1872-8383</identifier><identifier>DOI: 10.1016/j.tree.2024.05.006</identifier><identifier>PMID: 38862358</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>climate ; climate change ; economies of scale ; environmental factors ; environmental prediction ; evolution ; Life Sciences ; masting ; plant adaptation ; plant demography ; plant reproduction ; pollination ; prediction ; satiety ; species ; weather</subject><ispartof>Trends in ecology & evolution (Amsterdam), 2024-09, Vol.39 (9), p.851-862</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c462t-8110bef0dce4a64577d5afc5dd3d7e73e65b3397d9acb7ba41d79e9606aec2133</cites><orcidid>0000-0002-6777-9034 ; 0000-0001-6763-3601 ; 0000-0001-7324-7002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169534724001174$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38862358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04778439$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogdziewicz, Michal</creatorcontrib><creatorcontrib>Kelly, Dave</creatorcontrib><creatorcontrib>Ascoli, Davide</creatorcontrib><creatorcontrib>Caignard, Thomas</creatorcontrib><creatorcontrib>Chianucci, Francesco</creatorcontrib><creatorcontrib>Crone, Elizabeth E.</creatorcontrib><creatorcontrib>Fleurot, Emilie</creatorcontrib><creatorcontrib>Foest, Jessie J.</creatorcontrib><creatorcontrib>Gratzer, Georg</creatorcontrib><creatorcontrib>Hagiwara, Tomika</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Journé, Valentin</creatorcontrib><creatorcontrib>Keurinck, Léa</creatorcontrib><creatorcontrib>Kondrat, Katarzyna</creatorcontrib><creatorcontrib>McClory, Ryan</creatorcontrib><creatorcontrib>LaMontagne, Jalene M.</creatorcontrib><creatorcontrib>Mundo, Ignacio A.</creatorcontrib><creatorcontrib>Nussbaumer, Anita</creatorcontrib><creatorcontrib>Oberklammer, Iris</creatorcontrib><creatorcontrib>Ohno, Misuzu</creatorcontrib><creatorcontrib>Pearse, Ian S.</creatorcontrib><creatorcontrib>Pesendorfer, Mario B.</creatorcontrib><creatorcontrib>Resente, Giulia</creatorcontrib><creatorcontrib>Satake, Akiko</creatorcontrib><creatorcontrib>Shibata, Mitsue</creatorcontrib><creatorcontrib>Snell, Rebecca S.</creatorcontrib><creatorcontrib>Szymkowiak, Jakub</creatorcontrib><creatorcontrib>Touzot, Laura</creatorcontrib><creatorcontrib>Zwolak, Rafal</creatorcontrib><creatorcontrib>Zywiec, Magdalena</creatorcontrib><creatorcontrib>Hacket-Pain, Andrew J.</creatorcontrib><title>Evolutionary ecology of masting: mechanisms, models, and climate change</title><title>Trends in ecology & evolution (Amsterdam)</title><addtitle>Trends Ecol Evol</addtitle><description>The importance of masting for ecosystem processes is well established; now we need to understand its evolutionary and physiological drivers.Synchronous interannual variation in reproduction is driven by a combination of environmental variation, weather cues, and resource dynamics. These three major masting drivers, which span both proximate and ultimate factors, are not mutually exclusive and likely apply in all species, with varying importance.Masting improves plant fitness via well-documented density-dependent processes, but the costs of masting remain stubbornly understudied, preventing the integration required to fully understand masting variation across species.Improved understanding of masting drivers and links between weather variation and seed production will improve conservation outcomes, ecological forecasts, and guide management under climate change.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.</description><subject>climate</subject><subject>climate change</subject><subject>economies of scale</subject><subject>environmental factors</subject><subject>environmental prediction</subject><subject>evolution</subject><subject>Life Sciences</subject><subject>masting</subject><subject>plant adaptation</subject><subject>plant demography</subject><subject>plant reproduction</subject><subject>pollination</subject><subject>prediction</subject><subject>satiety</subject><subject>species</subject><subject>weather</subject><issn>0169-5347</issn><issn>1872-8383</issn><issn>1872-8383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EokvhD3BAOYJEgr8_UC9VVVqklbjA2XLsydarJC52dqX99zja0iPCl5HsZ16P5kHoPcEdwUR-2XdLBugoprzDosNYvkAbohVtNdPsJdpUyLSCcXWB3pSyx_UYbl6jC6a1pEzoDbq7PabxsMQ0u3xqwKcx7U5NGprJlSXOu6_NBP7BzbFM5XMzpQBjrW4OjR_j5BZo1tcdvEWvBjcWePdUL9Gvb7c_b-7b7Y-77zfX29ZzSZdWE4J7GHDwwJ3kQqkg3OBFCCwoUAyk6BkzKhjne9U7ToIyYCSWDjwljF2iT-fcBzfax1xHyCebXLT311u73mGulObMHEllP57Zx5x-H6AsdorFwzi6GdKhWEYEk0RTQ_8Draur30tTUXpGfU6lZBiexyDYrl7s3q5e7OrFYmGrl9r04Sn_0E8Qnlv-iqjA1Rmo-4VjhGyLjzB7CDGDX2xI8V_5fwDPzJ16</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Bogdziewicz, Michal</creator><creator>Kelly, Dave</creator><creator>Ascoli, Davide</creator><creator>Caignard, Thomas</creator><creator>Chianucci, Francesco</creator><creator>Crone, Elizabeth E.</creator><creator>Fleurot, Emilie</creator><creator>Foest, Jessie J.</creator><creator>Gratzer, Georg</creator><creator>Hagiwara, Tomika</creator><creator>Han, Qingmin</creator><creator>Journé, Valentin</creator><creator>Keurinck, Léa</creator><creator>Kondrat, Katarzyna</creator><creator>McClory, Ryan</creator><creator>LaMontagne, Jalene M.</creator><creator>Mundo, Ignacio A.</creator><creator>Nussbaumer, Anita</creator><creator>Oberklammer, Iris</creator><creator>Ohno, Misuzu</creator><creator>Pearse, Ian S.</creator><creator>Pesendorfer, Mario B.</creator><creator>Resente, Giulia</creator><creator>Satake, Akiko</creator><creator>Shibata, Mitsue</creator><creator>Snell, Rebecca S.</creator><creator>Szymkowiak, Jakub</creator><creator>Touzot, Laura</creator><creator>Zwolak, Rafal</creator><creator>Zywiec, Magdalena</creator><creator>Hacket-Pain, Andrew J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6777-9034</orcidid><orcidid>https://orcid.org/0000-0001-6763-3601</orcidid><orcidid>https://orcid.org/0000-0001-7324-7002</orcidid></search><sort><creationdate>20240901</creationdate><title>Evolutionary ecology of masting: mechanisms, models, and climate change</title><author>Bogdziewicz, Michal ; Kelly, Dave ; Ascoli, Davide ; Caignard, Thomas ; Chianucci, Francesco ; Crone, Elizabeth E. ; Fleurot, Emilie ; Foest, Jessie J. ; Gratzer, Georg ; Hagiwara, Tomika ; Han, Qingmin ; Journé, Valentin ; Keurinck, Léa ; Kondrat, Katarzyna ; McClory, Ryan ; LaMontagne, Jalene M. ; Mundo, Ignacio A. ; Nussbaumer, Anita ; Oberklammer, Iris ; Ohno, Misuzu ; Pearse, Ian S. ; Pesendorfer, Mario B. ; Resente, Giulia ; Satake, Akiko ; Shibata, Mitsue ; Snell, Rebecca S. ; Szymkowiak, Jakub ; Touzot, Laura ; Zwolak, Rafal ; Zywiec, Magdalena ; Hacket-Pain, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8110bef0dce4a64577d5afc5dd3d7e73e65b3397d9acb7ba41d79e9606aec2133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>climate</topic><topic>climate change</topic><topic>economies of scale</topic><topic>environmental factors</topic><topic>environmental prediction</topic><topic>evolution</topic><topic>Life Sciences</topic><topic>masting</topic><topic>plant adaptation</topic><topic>plant demography</topic><topic>plant reproduction</topic><topic>pollination</topic><topic>prediction</topic><topic>satiety</topic><topic>species</topic><topic>weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogdziewicz, Michal</creatorcontrib><creatorcontrib>Kelly, Dave</creatorcontrib><creatorcontrib>Ascoli, Davide</creatorcontrib><creatorcontrib>Caignard, Thomas</creatorcontrib><creatorcontrib>Chianucci, Francesco</creatorcontrib><creatorcontrib>Crone, Elizabeth E.</creatorcontrib><creatorcontrib>Fleurot, Emilie</creatorcontrib><creatorcontrib>Foest, Jessie J.</creatorcontrib><creatorcontrib>Gratzer, Georg</creatorcontrib><creatorcontrib>Hagiwara, Tomika</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Journé, Valentin</creatorcontrib><creatorcontrib>Keurinck, Léa</creatorcontrib><creatorcontrib>Kondrat, Katarzyna</creatorcontrib><creatorcontrib>McClory, Ryan</creatorcontrib><creatorcontrib>LaMontagne, Jalene M.</creatorcontrib><creatorcontrib>Mundo, Ignacio A.</creatorcontrib><creatorcontrib>Nussbaumer, Anita</creatorcontrib><creatorcontrib>Oberklammer, Iris</creatorcontrib><creatorcontrib>Ohno, Misuzu</creatorcontrib><creatorcontrib>Pearse, Ian S.</creatorcontrib><creatorcontrib>Pesendorfer, Mario B.</creatorcontrib><creatorcontrib>Resente, Giulia</creatorcontrib><creatorcontrib>Satake, Akiko</creatorcontrib><creatorcontrib>Shibata, Mitsue</creatorcontrib><creatorcontrib>Snell, Rebecca S.</creatorcontrib><creatorcontrib>Szymkowiak, Jakub</creatorcontrib><creatorcontrib>Touzot, Laura</creatorcontrib><creatorcontrib>Zwolak, Rafal</creatorcontrib><creatorcontrib>Zywiec, Magdalena</creatorcontrib><creatorcontrib>Hacket-Pain, Andrew J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Trends in ecology & evolution (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogdziewicz, Michal</au><au>Kelly, Dave</au><au>Ascoli, Davide</au><au>Caignard, Thomas</au><au>Chianucci, Francesco</au><au>Crone, Elizabeth E.</au><au>Fleurot, Emilie</au><au>Foest, Jessie J.</au><au>Gratzer, Georg</au><au>Hagiwara, Tomika</au><au>Han, Qingmin</au><au>Journé, Valentin</au><au>Keurinck, Léa</au><au>Kondrat, Katarzyna</au><au>McClory, Ryan</au><au>LaMontagne, Jalene M.</au><au>Mundo, Ignacio A.</au><au>Nussbaumer, Anita</au><au>Oberklammer, Iris</au><au>Ohno, Misuzu</au><au>Pearse, Ian S.</au><au>Pesendorfer, Mario B.</au><au>Resente, Giulia</au><au>Satake, Akiko</au><au>Shibata, Mitsue</au><au>Snell, Rebecca S.</au><au>Szymkowiak, Jakub</au><au>Touzot, Laura</au><au>Zwolak, Rafal</au><au>Zywiec, Magdalena</au><au>Hacket-Pain, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary ecology of masting: mechanisms, models, and climate change</atitle><jtitle>Trends in ecology & evolution (Amsterdam)</jtitle><addtitle>Trends Ecol Evol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>39</volume><issue>9</issue><spage>851</spage><epage>862</epage><pages>851-862</pages><issn>0169-5347</issn><issn>1872-8383</issn><eissn>1872-8383</eissn><abstract>The importance of masting for ecosystem processes is well established; now we need to understand its evolutionary and physiological drivers.Synchronous interannual variation in reproduction is driven by a combination of environmental variation, weather cues, and resource dynamics. These three major masting drivers, which span both proximate and ultimate factors, are not mutually exclusive and likely apply in all species, with varying importance.Masting improves plant fitness via well-documented density-dependent processes, but the costs of masting remain stubbornly understudied, preventing the integration required to fully understand masting variation across species.Improved understanding of masting drivers and links between weather variation and seed production will improve conservation outcomes, ecological forecasts, and guide management under climate change.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38862358</pmid><doi>10.1016/j.tree.2024.05.006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6777-9034</orcidid><orcidid>https://orcid.org/0000-0001-6763-3601</orcidid><orcidid>https://orcid.org/0000-0001-7324-7002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-5347 |
ispartof | Trends in ecology & evolution (Amsterdam), 2024-09, Vol.39 (9), p.851-862 |
issn | 0169-5347 1872-8383 1872-8383 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04778439v1 |
source | Elsevier ScienceDirect Journals |
subjects | climate climate change economies of scale environmental factors environmental prediction evolution Life Sciences masting plant adaptation plant demography plant reproduction pollination prediction satiety species weather |
title | Evolutionary ecology of masting: mechanisms, models, and climate change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20ecology%20of%20masting:%20mechanisms,%20models,%20and%20climate%20change&rft.jtitle=Trends%20in%20ecology%20&%20evolution%20(Amsterdam)&rft.au=Bogdziewicz,%20Michal&rft.date=2024-09-01&rft.volume=39&rft.issue=9&rft.spage=851&rft.epage=862&rft.pages=851-862&rft.issn=0169-5347&rft.eissn=1872-8383&rft_id=info:doi/10.1016/j.tree.2024.05.006&rft_dat=%3Cproquest_hal_p%3E3153618292%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100913369&rft_id=info:pmid/38862358&rft_els_id=S0169534724001174&rfr_iscdi=true |