One- and two-photon brightness of proteins interacting with gold. A closer look at gold-insulin conjugates

Red luminophores displaying large Stokes shift and high-quantum yields are obtained when gold salts are reacted with proteins under strongly alkaline conditions. Although bovine serum albumin (BSA) has mainly been used as a protein template, other attempts to prepare red luminophores have been propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-08, Vol.16 (31), p.14953-14958
Hauptverfasser: Bain, Dipankar, Yuan, Hao, Pniakowska, Anna, Hajda, Agata, Bouanchaud, Charlène, Chirot, Fabien, Comby-Zerbino, Clothilde, Gueguen-Chaignon, Virginie, Bonačić-Koutecký, Vlasta, Olesiak-Banska, Joanna, Sanader Maršić, Željka, Antoine, Rodolphe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red luminophores displaying large Stokes shift and high-quantum yields are obtained when gold salts are reacted with proteins under strongly alkaline conditions. Although bovine serum albumin (BSA) has mainly been used as a protein template, other attempts to prepare red luminophores have been proposed using other proteins. Here, we report on the structural characterization and nonlinear optical properties of insulin-gold conjugates. Such conjugates display strong luminescence at ∼670 nm with quantum yields that reach 5.4%. They also display long luminescence lifetimes allowing efficient reactive oxygen species generation, with a quantum yield of O generation reaching 13%. In addition, they exhibit remarkable nonlinear optical properties and in particular a strong two-photon excited fluorescence (TPEF) cross section in the range of 800-1100 nm. By combining experimental studies and time-dependent density functional theory simulations (TD-DFT), we show the formation of insulin-Au(III) conjugates. The interaction of Au(III) ions with the aromatic rings of tyrosine induces charge transfer-like excitation in the visible range. Experimental investigations, together with molecular dynamics simulations of insulin and calculations of electronic properties in a model system, are performed to explore the origin of optical features and the structure-optical property relationship, leading the way to new concepts for nonlinear optics using protein-Au(III) conjugates.
ISSN:2040-3364
2040-3372
2040-3372
DOI:10.1039/d4nr01697a