Structure and role of the pressure Hessian in regions of strong vorticity in turbulence

Amplification of velocity gradients, a key feature of turbulent flows, is affected by the non-local character of the incompressible fluid equations expressed by the second derivative (Hessian) of the pressure field. By analysing the structure of the flow in regions where the vorticity is the highest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-03, Vol.983, Article R2
Hauptverfasser: Yang, P.-F., Xu, H., Pumir, A., He, G.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 983
creator Yang, P.-F.
Xu, H.
Pumir, A.
He, G.W.
description Amplification of velocity gradients, a key feature of turbulent flows, is affected by the non-local character of the incompressible fluid equations expressed by the second derivative (Hessian) of the pressure field. By analysing the structure of the flow in regions where the vorticity is the highest, we propose an approximate expression for the pressure Hessian in terms of the local vorticity, consistent with the existence of intense vortex tubes. Contrary to the often used simplification of an isotropic form for the pressure Hessian, which in effect inhibits vortex stretching, the proposed approximate form of the pressure Hessian enables much stronger vortex stretching. The prediction of the approximation proposed here is validated with results of direct numerical simulations of turbulent flows.
doi_str_mv 10.1017/jfm.2024.143
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04769986v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_143</cupid><sourcerecordid>2956994712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-6cfcc62d83010a5009b3eb5f2f71790548abe926d157f358d7affb64f64880e73</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoOKd3_oCAV4KtJx9N2ssx1AkDL1S8DGmbbB1dM5N2sH9vyobeePXCOc95OTwI3RJICRD5uLHblALlKeHsDE0IF0UiBc_O0QSA0oQQCpfoKoQNAGFQyAn6eu_9UPWDN1h3NfauNdhZ3K8N3nkTwrhYxGx0h5sOe7NqXBdGJPTedSu8d75vqqY_jOvYUw6t6SpzjS6sboO5OeUUfT4_fcwXyfLt5XU-WyYVY6RPRGWrStA6Z0BAZwBFyUyZWWolkQVkPNelKaioSSYty_JaamtLwa3geQ5Gsim6P_audat2vtlqf1BON2oxW6pxBlyKosjFnkT27sjuvPseTOjVxg2-i-8pWmSR4pLQSD0cqcq7ELyxv7UE1KhZRc1q1Kyi5oinJ1xvS9_UK_PX-u_BD6_Tfr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956994712</pqid></control><display><type>article</type><title>Structure and role of the pressure Hessian in regions of strong vorticity in turbulence</title><source>Cambridge University Press Journals Complete</source><creator>Yang, P.-F. ; Xu, H. ; Pumir, A. ; He, G.W.</creator><creatorcontrib>Yang, P.-F. ; Xu, H. ; Pumir, A. ; He, G.W.</creatorcontrib><description>Amplification of velocity gradients, a key feature of turbulent flows, is affected by the non-local character of the incompressible fluid equations expressed by the second derivative (Hessian) of the pressure field. By analysing the structure of the flow in regions where the vorticity is the highest, we propose an approximate expression for the pressure Hessian in terms of the local vorticity, consistent with the existence of intense vortex tubes. Contrary to the often used simplification of an isotropic form for the pressure Hessian, which in effect inhibits vortex stretching, the proposed approximate form of the pressure Hessian enables much stronger vortex stretching. The prediction of the approximation proposed here is validated with results of direct numerical simulations of turbulent flows.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.143</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Datasets ; Direct numerical simulation ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Incompressible flow ; Incompressible fluids ; JFM Rapids ; Mechanics ; Nonlinear Sciences ; Physics ; Pressure ; Pressure effects ; Pressure field ; Reynolds number ; Stretching ; Tubes ; Turbulence ; Velocity ; Velocity gradient ; Velocity gradients ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2024-03, Vol.983, Article R2</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-6cfcc62d83010a5009b3eb5f2f71790548abe926d157f358d7affb64f64880e73</cites><orcidid>0000-0001-9946-7353 ; 0000-0003-1949-500X ; 0000-0002-2863-7658 ; 0000-0003-4738-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024001435/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04769986$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, P.-F.</creatorcontrib><creatorcontrib>Xu, H.</creatorcontrib><creatorcontrib>Pumir, A.</creatorcontrib><creatorcontrib>He, G.W.</creatorcontrib><title>Structure and role of the pressure Hessian in regions of strong vorticity in turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Amplification of velocity gradients, a key feature of turbulent flows, is affected by the non-local character of the incompressible fluid equations expressed by the second derivative (Hessian) of the pressure field. By analysing the structure of the flow in regions where the vorticity is the highest, we propose an approximate expression for the pressure Hessian in terms of the local vorticity, consistent with the existence of intense vortex tubes. Contrary to the often used simplification of an isotropic form for the pressure Hessian, which in effect inhibits vortex stretching, the proposed approximate form of the pressure Hessian enables much stronger vortex stretching. The prediction of the approximation proposed here is validated with results of direct numerical simulations of turbulent flows.</description><subject>Approximation</subject><subject>Datasets</subject><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>JFM Rapids</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Physics</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Pressure field</subject><subject>Reynolds number</subject><subject>Stretching</subject><subject>Tubes</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Velocity gradient</subject><subject>Velocity gradients</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkF1LwzAUhoMoOKd3_oCAV4KtJx9N2ssx1AkDL1S8DGmbbB1dM5N2sH9vyobeePXCOc95OTwI3RJICRD5uLHblALlKeHsDE0IF0UiBc_O0QSA0oQQCpfoKoQNAGFQyAn6eu_9UPWDN1h3NfauNdhZ3K8N3nkTwrhYxGx0h5sOe7NqXBdGJPTedSu8d75vqqY_jOvYUw6t6SpzjS6sboO5OeUUfT4_fcwXyfLt5XU-WyYVY6RPRGWrStA6Z0BAZwBFyUyZWWolkQVkPNelKaioSSYty_JaamtLwa3geQ5Gsim6P_audat2vtlqf1BON2oxW6pxBlyKosjFnkT27sjuvPseTOjVxg2-i-8pWmSR4pLQSD0cqcq7ELyxv7UE1KhZRc1q1Kyi5oinJ1xvS9_UK_PX-u_BD6_Tfr0</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Yang, P.-F.</creator><creator>Xu, H.</creator><creator>Pumir, A.</creator><creator>He, G.W.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9946-7353</orcidid><orcidid>https://orcid.org/0000-0003-1949-500X</orcidid><orcidid>https://orcid.org/0000-0002-2863-7658</orcidid><orcidid>https://orcid.org/0000-0003-4738-0816</orcidid></search><sort><creationdate>20240315</creationdate><title>Structure and role of the pressure Hessian in regions of strong vorticity in turbulence</title><author>Yang, P.-F. ; Xu, H. ; Pumir, A. ; He, G.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-6cfcc62d83010a5009b3eb5f2f71790548abe926d157f358d7affb64f64880e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Datasets</topic><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>JFM Rapids</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Physics</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Pressure field</topic><topic>Reynolds number</topic><topic>Stretching</topic><topic>Tubes</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Velocity gradient</topic><topic>Velocity gradients</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, P.-F.</creatorcontrib><creatorcontrib>Xu, H.</creatorcontrib><creatorcontrib>Pumir, A.</creatorcontrib><creatorcontrib>He, G.W.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, P.-F.</au><au>Xu, H.</au><au>Pumir, A.</au><au>He, G.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and role of the pressure Hessian in regions of strong vorticity in turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>983</volume><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Amplification of velocity gradients, a key feature of turbulent flows, is affected by the non-local character of the incompressible fluid equations expressed by the second derivative (Hessian) of the pressure field. By analysing the structure of the flow in regions where the vorticity is the highest, we propose an approximate expression for the pressure Hessian in terms of the local vorticity, consistent with the existence of intense vortex tubes. Contrary to the often used simplification of an isotropic form for the pressure Hessian, which in effect inhibits vortex stretching, the proposed approximate form of the pressure Hessian enables much stronger vortex stretching. The prediction of the approximation proposed here is validated with results of direct numerical simulations of turbulent flows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.143</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9946-7353</orcidid><orcidid>https://orcid.org/0000-0003-1949-500X</orcidid><orcidid>https://orcid.org/0000-0002-2863-7658</orcidid><orcidid>https://orcid.org/0000-0003-4738-0816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-03, Vol.983, Article R2
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_04769986v1
source Cambridge University Press Journals Complete
subjects Approximation
Datasets
Direct numerical simulation
Fluid dynamics
Fluid flow
Fluid mechanics
Incompressible flow
Incompressible fluids
JFM Rapids
Mechanics
Nonlinear Sciences
Physics
Pressure
Pressure effects
Pressure field
Reynolds number
Stretching
Tubes
Turbulence
Velocity
Velocity gradient
Velocity gradients
Vortices
Vorticity
title Structure and role of the pressure Hessian in regions of strong vorticity in turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20role%20of%20the%20pressure%20Hessian%20in%20regions%20of%20strong%20vorticity%20in%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Yang,%20P.-F.&rft.date=2024-03-15&rft.volume=983&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.143&rft_dat=%3Cproquest_hal_p%3E2956994712%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956994712&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_143&rfr_iscdi=true