Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument

Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2020-09, Vol.125 (9), p.n/a
Hauptverfasser: Rampe, E. B., Bristow, T. F., Morris, R. V., Morrison, S. M., Achilles, C. N., Ming, D. W., Vaniman, D. T., Blake, D. F., Tu, V. M., Chipera, S. J., Yen, A. S., Peretyazhko, T. S., Downs, R. T., Hazen, R. M., Treiman, A. H., Grotzinger, J. P., Castle, N., Craig, P. I., Marais, D. J. Des, Thorpe, M. T., Walroth, R. C., Downs, G. W., Fraeman, A. A., Siebach, K. L., Gellert, R., Lafuente, B., McAdam, A. C., Meslin, P.-Y., Sutter, B., Salvatore, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of geophysical research. Planets
container_volume 125
creator Rampe, E. B.
Bristow, T. F.
Morris, R. V.
Morrison, S. M.
Achilles, C. N.
Ming, D. W.
Vaniman, D. T.
Blake, D. F.
Tu, V. M.
Chipera, S. J.
Yen, A. S.
Peretyazhko, T. S.
Downs, R. T.
Hazen, R. M.
Treiman, A. H.
Grotzinger, J. P.
Castle, N.
Craig, P. I.
Marais, D. J. Des
Thorpe, M. T.
Walroth, R. C.
Downs, G. W.
Fraeman, A. A.
Siebach, K. L.
Gellert, R.
Lafuente, B.
McAdam, A. C.
Meslin, P.-Y.
Sutter, B.
Salvatore, M. R.
description Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.
doi_str_mv 10.1029/2019JE006306
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04767594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446708207</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsNTePHoIeBJcnSS7yeZYSu0HLWL9uIbsbtJuaTc12Sr9701ZFU_OZR4zv_cYJoouMdxhIOKeABbTIQCjwE6iDsFMxAIDnP5oEPw86nm_hlBZGGHaiZ7mVa2d2tjlAVmD3oJGi31e1WhRlUuNjLNb1Kw0mivn0XNR6brQaKZy61Rj3QENVjpEoEntG7ff6rq5iM6M2njd--7d6PVh-DIYx7PH0WTQn8UqpYTGJU9LUXANILQpcJqJPGF5RvKy0CkJW6JTEEIYkWBecJ4JrBRnJi2VMUww2o1u2tyV2sidq7bKHaRVlRz3Z_I4g4QznorkAwf2umV3zr7vtW_k2u5dHc6TJEkYh4wAD9RtSxXOeu-0-Y3FII8_ln9_HHDa4p_VRh_-ZeV0tBgSTDMaXFetq1Zeybpx4QQgkALgjFD6BbU_gvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446708207</pqid></control><display><type>article</type><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><creator>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</creator><creatorcontrib>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</creatorcontrib><description>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2019JE006306</identifier><language>eng</language><publisher>Johnson Space Center: American Geophysical Union and Wiley</publisher><subject>aqueous alteration ; Astrophysics ; Cementing ; CheMin ; Crystallization ; Curiosity (Mars rover) ; Diagenesis ; Earth and Planetary Astrophysics ; Earth Sciences ; Erosion resistance ; Exobiology ; Gale crater ; Geochemistry ; Geological history ; Geosciences (General) ; Grain size ; Groundwater ; Hematite ; Iron ; Jarosite ; Laboratories ; Mars ; Mars craters ; Mars rovers ; Mars surface ; Mineralogy ; Outcrops ; Rocks ; Saline solutions ; Salinity ; Sciences of the Universe ; Sedimentology ; Sediments ; Short wave radiation ; Silica ; Silicon dioxide ; Slopes ; Smectites ; X‐ray diffraction</subject><ispartof>Journal of geophysical research. Planets, 2020-09, Vol.125 (9), p.n/a</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</citedby><cites>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</cites><orcidid>0000-0002-3036-170X ; 0000-0001-5533-6490 ; 0000-0002-8073-2839 ; 0000-0003-1413-4002 ; 0000-0003-4163-8644 ; 0000-0002-0608-1249 ; 0000-0002-6999-0028 ; 0000-0001-6725-0555 ; 0000-0002-6827-5831 ; 0000-0003-4080-4997 ; 0000-0002-6628-6297 ; 0000-0001-7661-2626 ; 0000-0002-5174-6297 ; 0000-0003-4017-5158 ; 0000-0003-2410-0412 ; 0000-0003-0567-8876 ; 0000-0001-9120-2991 ; 0000-0002-1712-8057 ; 0000-0001-7928-834X ; 0000-0001-9185-6768 ; 0000-0002-0703-3951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JE006306$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JE006306$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,796,881,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04767594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rampe, E. B.</creatorcontrib><creatorcontrib>Bristow, T. F.</creatorcontrib><creatorcontrib>Morris, R. V.</creatorcontrib><creatorcontrib>Morrison, S. M.</creatorcontrib><creatorcontrib>Achilles, C. N.</creatorcontrib><creatorcontrib>Ming, D. W.</creatorcontrib><creatorcontrib>Vaniman, D. T.</creatorcontrib><creatorcontrib>Blake, D. F.</creatorcontrib><creatorcontrib>Tu, V. M.</creatorcontrib><creatorcontrib>Chipera, S. J.</creatorcontrib><creatorcontrib>Yen, A. S.</creatorcontrib><creatorcontrib>Peretyazhko, T. S.</creatorcontrib><creatorcontrib>Downs, R. T.</creatorcontrib><creatorcontrib>Hazen, R. M.</creatorcontrib><creatorcontrib>Treiman, A. H.</creatorcontrib><creatorcontrib>Grotzinger, J. P.</creatorcontrib><creatorcontrib>Castle, N.</creatorcontrib><creatorcontrib>Craig, P. I.</creatorcontrib><creatorcontrib>Marais, D. J. Des</creatorcontrib><creatorcontrib>Thorpe, M. T.</creatorcontrib><creatorcontrib>Walroth, R. C.</creatorcontrib><creatorcontrib>Downs, G. W.</creatorcontrib><creatorcontrib>Fraeman, A. A.</creatorcontrib><creatorcontrib>Siebach, K. L.</creatorcontrib><creatorcontrib>Gellert, R.</creatorcontrib><creatorcontrib>Lafuente, B.</creatorcontrib><creatorcontrib>McAdam, A. C.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Sutter, B.</creatorcontrib><creatorcontrib>Salvatore, M. R.</creatorcontrib><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><title>Journal of geophysical research. Planets</title><description>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</description><subject>aqueous alteration</subject><subject>Astrophysics</subject><subject>Cementing</subject><subject>CheMin</subject><subject>Crystallization</subject><subject>Curiosity (Mars rover)</subject><subject>Diagenesis</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth Sciences</subject><subject>Erosion resistance</subject><subject>Exobiology</subject><subject>Gale crater</subject><subject>Geochemistry</subject><subject>Geological history</subject><subject>Geosciences (General)</subject><subject>Grain size</subject><subject>Groundwater</subject><subject>Hematite</subject><subject>Iron</subject><subject>Jarosite</subject><subject>Laboratories</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars rovers</subject><subject>Mars surface</subject><subject>Mineralogy</subject><subject>Outcrops</subject><subject>Rocks</subject><subject>Saline solutions</subject><subject>Salinity</subject><subject>Sciences of the Universe</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Short wave radiation</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slopes</subject><subject>Smectites</subject><subject>X‐ray diffraction</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1LAzEQxRdRsNTePHoIeBJcnSS7yeZYSu0HLWL9uIbsbtJuaTc12Sr9701ZFU_OZR4zv_cYJoouMdxhIOKeABbTIQCjwE6iDsFMxAIDnP5oEPw86nm_hlBZGGHaiZ7mVa2d2tjlAVmD3oJGi31e1WhRlUuNjLNb1Kw0mivn0XNR6brQaKZy61Rj3QENVjpEoEntG7ff6rq5iM6M2njd--7d6PVh-DIYx7PH0WTQn8UqpYTGJU9LUXANILQpcJqJPGF5RvKy0CkJW6JTEEIYkWBecJ4JrBRnJi2VMUww2o1u2tyV2sidq7bKHaRVlRz3Z_I4g4QznorkAwf2umV3zr7vtW_k2u5dHc6TJEkYh4wAD9RtSxXOeu-0-Y3FII8_ln9_HHDa4p_VRh_-ZeV0tBgSTDMaXFetq1Zeybpx4QQgkALgjFD6BbU_gvc</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Rampe, E. B.</creator><creator>Bristow, T. F.</creator><creator>Morris, R. V.</creator><creator>Morrison, S. M.</creator><creator>Achilles, C. N.</creator><creator>Ming, D. W.</creator><creator>Vaniman, D. T.</creator><creator>Blake, D. F.</creator><creator>Tu, V. M.</creator><creator>Chipera, S. J.</creator><creator>Yen, A. S.</creator><creator>Peretyazhko, T. S.</creator><creator>Downs, R. T.</creator><creator>Hazen, R. M.</creator><creator>Treiman, A. H.</creator><creator>Grotzinger, J. P.</creator><creator>Castle, N.</creator><creator>Craig, P. I.</creator><creator>Marais, D. J. Des</creator><creator>Thorpe, M. T.</creator><creator>Walroth, R. C.</creator><creator>Downs, G. W.</creator><creator>Fraeman, A. A.</creator><creator>Siebach, K. L.</creator><creator>Gellert, R.</creator><creator>Lafuente, B.</creator><creator>McAdam, A. C.</creator><creator>Meslin, P.-Y.</creator><creator>Sutter, B.</creator><creator>Salvatore, M. R.</creator><general>American Geophysical Union and Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>CYE</scope><scope>CYI</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3036-170X</orcidid><orcidid>https://orcid.org/0000-0001-5533-6490</orcidid><orcidid>https://orcid.org/0000-0002-8073-2839</orcidid><orcidid>https://orcid.org/0000-0003-1413-4002</orcidid><orcidid>https://orcid.org/0000-0003-4163-8644</orcidid><orcidid>https://orcid.org/0000-0002-0608-1249</orcidid><orcidid>https://orcid.org/0000-0002-6999-0028</orcidid><orcidid>https://orcid.org/0000-0001-6725-0555</orcidid><orcidid>https://orcid.org/0000-0002-6827-5831</orcidid><orcidid>https://orcid.org/0000-0003-4080-4997</orcidid><orcidid>https://orcid.org/0000-0002-6628-6297</orcidid><orcidid>https://orcid.org/0000-0001-7661-2626</orcidid><orcidid>https://orcid.org/0000-0002-5174-6297</orcidid><orcidid>https://orcid.org/0000-0003-4017-5158</orcidid><orcidid>https://orcid.org/0000-0003-2410-0412</orcidid><orcidid>https://orcid.org/0000-0003-0567-8876</orcidid><orcidid>https://orcid.org/0000-0001-9120-2991</orcidid><orcidid>https://orcid.org/0000-0002-1712-8057</orcidid><orcidid>https://orcid.org/0000-0001-7928-834X</orcidid><orcidid>https://orcid.org/0000-0001-9185-6768</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid></search><sort><creationdate>202009</creationdate><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><author>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aqueous alteration</topic><topic>Astrophysics</topic><topic>Cementing</topic><topic>CheMin</topic><topic>Crystallization</topic><topic>Curiosity (Mars rover)</topic><topic>Diagenesis</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth Sciences</topic><topic>Erosion resistance</topic><topic>Exobiology</topic><topic>Gale crater</topic><topic>Geochemistry</topic><topic>Geological history</topic><topic>Geosciences (General)</topic><topic>Grain size</topic><topic>Groundwater</topic><topic>Hematite</topic><topic>Iron</topic><topic>Jarosite</topic><topic>Laboratories</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars rovers</topic><topic>Mars surface</topic><topic>Mineralogy</topic><topic>Outcrops</topic><topic>Rocks</topic><topic>Saline solutions</topic><topic>Salinity</topic><topic>Sciences of the Universe</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Short wave radiation</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slopes</topic><topic>Smectites</topic><topic>X‐ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rampe, E. B.</creatorcontrib><creatorcontrib>Bristow, T. F.</creatorcontrib><creatorcontrib>Morris, R. V.</creatorcontrib><creatorcontrib>Morrison, S. M.</creatorcontrib><creatorcontrib>Achilles, C. N.</creatorcontrib><creatorcontrib>Ming, D. W.</creatorcontrib><creatorcontrib>Vaniman, D. T.</creatorcontrib><creatorcontrib>Blake, D. F.</creatorcontrib><creatorcontrib>Tu, V. M.</creatorcontrib><creatorcontrib>Chipera, S. J.</creatorcontrib><creatorcontrib>Yen, A. S.</creatorcontrib><creatorcontrib>Peretyazhko, T. S.</creatorcontrib><creatorcontrib>Downs, R. T.</creatorcontrib><creatorcontrib>Hazen, R. M.</creatorcontrib><creatorcontrib>Treiman, A. H.</creatorcontrib><creatorcontrib>Grotzinger, J. P.</creatorcontrib><creatorcontrib>Castle, N.</creatorcontrib><creatorcontrib>Craig, P. I.</creatorcontrib><creatorcontrib>Marais, D. J. Des</creatorcontrib><creatorcontrib>Thorpe, M. T.</creatorcontrib><creatorcontrib>Walroth, R. C.</creatorcontrib><creatorcontrib>Downs, G. W.</creatorcontrib><creatorcontrib>Fraeman, A. A.</creatorcontrib><creatorcontrib>Siebach, K. L.</creatorcontrib><creatorcontrib>Gellert, R.</creatorcontrib><creatorcontrib>Lafuente, B.</creatorcontrib><creatorcontrib>McAdam, A. C.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Sutter, B.</creatorcontrib><creatorcontrib>Salvatore, M. R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rampe, E. B.</au><au>Bristow, T. F.</au><au>Morris, R. V.</au><au>Morrison, S. M.</au><au>Achilles, C. N.</au><au>Ming, D. W.</au><au>Vaniman, D. T.</au><au>Blake, D. F.</au><au>Tu, V. M.</au><au>Chipera, S. J.</au><au>Yen, A. S.</au><au>Peretyazhko, T. S.</au><au>Downs, R. T.</au><au>Hazen, R. M.</au><au>Treiman, A. H.</au><au>Grotzinger, J. P.</au><au>Castle, N.</au><au>Craig, P. I.</au><au>Marais, D. J. Des</au><au>Thorpe, M. T.</au><au>Walroth, R. C.</au><au>Downs, G. W.</au><au>Fraeman, A. A.</au><au>Siebach, K. L.</au><au>Gellert, R.</au><au>Lafuente, B.</au><au>McAdam, A. C.</au><au>Meslin, P.-Y.</au><au>Sutter, B.</au><au>Salvatore, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2020-09</date><risdate>2020</risdate><volume>125</volume><issue>9</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</abstract><cop>Johnson Space Center</cop><pub>American Geophysical Union and Wiley</pub><doi>10.1029/2019JE006306</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-3036-170X</orcidid><orcidid>https://orcid.org/0000-0001-5533-6490</orcidid><orcidid>https://orcid.org/0000-0002-8073-2839</orcidid><orcidid>https://orcid.org/0000-0003-1413-4002</orcidid><orcidid>https://orcid.org/0000-0003-4163-8644</orcidid><orcidid>https://orcid.org/0000-0002-0608-1249</orcidid><orcidid>https://orcid.org/0000-0002-6999-0028</orcidid><orcidid>https://orcid.org/0000-0001-6725-0555</orcidid><orcidid>https://orcid.org/0000-0002-6827-5831</orcidid><orcidid>https://orcid.org/0000-0003-4080-4997</orcidid><orcidid>https://orcid.org/0000-0002-6628-6297</orcidid><orcidid>https://orcid.org/0000-0001-7661-2626</orcidid><orcidid>https://orcid.org/0000-0002-5174-6297</orcidid><orcidid>https://orcid.org/0000-0003-4017-5158</orcidid><orcidid>https://orcid.org/0000-0003-2410-0412</orcidid><orcidid>https://orcid.org/0000-0003-0567-8876</orcidid><orcidid>https://orcid.org/0000-0001-9120-2991</orcidid><orcidid>https://orcid.org/0000-0002-1712-8057</orcidid><orcidid>https://orcid.org/0000-0001-7928-834X</orcidid><orcidid>https://orcid.org/0000-0001-9185-6768</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2020-09, Vol.125 (9), p.n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_hal_primary_oai_HAL_hal_04767594v1
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; NASA Technical Reports Server; Alma/SFX Local Collection
subjects aqueous alteration
Astrophysics
Cementing
CheMin
Crystallization
Curiosity (Mars rover)
Diagenesis
Earth and Planetary Astrophysics
Earth Sciences
Erosion resistance
Exobiology
Gale crater
Geochemistry
Geological history
Geosciences (General)
Grain size
Groundwater
Hematite
Iron
Jarosite
Laboratories
Mars
Mars craters
Mars rovers
Mars surface
Mineralogy
Outcrops
Rocks
Saline solutions
Salinity
Sciences of the Universe
Sedimentology
Sediments
Short wave radiation
Silica
Silicon dioxide
Slopes
Smectites
X‐ray diffraction
title Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogy%20of%20Vera%20Rubin%20Ridge%20from%20the%20Mars%20Science%20Laboratory%20CheMin%20Instrument&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Rampe,%20E.%20B.&rft.date=2020-09&rft.volume=125&rft.issue=9&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2019JE006306&rft_dat=%3Cproquest_hal_p%3E2446708207%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446708207&rft_id=info:pmid/&rfr_iscdi=true