Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument
Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Planets 2020-09, Vol.125 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of geophysical research. Planets |
container_volume | 125 |
creator | Rampe, E. B. Bristow, T. F. Morris, R. V. Morrison, S. M. Achilles, C. N. Ming, D. W. Vaniman, D. T. Blake, D. F. Tu, V. M. Chipera, S. J. Yen, A. S. Peretyazhko, T. S. Downs, R. T. Hazen, R. M. Treiman, A. H. Grotzinger, J. P. Castle, N. Craig, P. I. Marais, D. J. Des Thorpe, M. T. Walroth, R. C. Downs, G. W. Fraeman, A. A. Siebach, K. L. Gellert, R. Lafuente, B. McAdam, A. C. Meslin, P.-Y. Sutter, B. Salvatore, M. R. |
description | Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium. |
doi_str_mv | 10.1029/2019JE006306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04767594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446708207</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRsNTePHoIeBJcnSS7yeZYSu0HLWL9uIbsbtJuaTc12Sr9701ZFU_OZR4zv_cYJoouMdxhIOKeABbTIQCjwE6iDsFMxAIDnP5oEPw86nm_hlBZGGHaiZ7mVa2d2tjlAVmD3oJGi31e1WhRlUuNjLNb1Kw0mivn0XNR6brQaKZy61Rj3QENVjpEoEntG7ff6rq5iM6M2njd--7d6PVh-DIYx7PH0WTQn8UqpYTGJU9LUXANILQpcJqJPGF5RvKy0CkJW6JTEEIYkWBecJ4JrBRnJi2VMUww2o1u2tyV2sidq7bKHaRVlRz3Z_I4g4QznorkAwf2umV3zr7vtW_k2u5dHc6TJEkYh4wAD9RtSxXOeu-0-Y3FII8_ln9_HHDa4p_VRh_-ZeV0tBgSTDMaXFetq1Zeybpx4QQgkALgjFD6BbU_gvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446708207</pqid></control><display><type>article</type><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>NASA Technical Reports Server</source><source>Alma/SFX Local Collection</source><creator>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</creator><creatorcontrib>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</creatorcontrib><description>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2019JE006306</identifier><language>eng</language><publisher>Johnson Space Center: American Geophysical Union and Wiley</publisher><subject>aqueous alteration ; Astrophysics ; Cementing ; CheMin ; Crystallization ; Curiosity (Mars rover) ; Diagenesis ; Earth and Planetary Astrophysics ; Earth Sciences ; Erosion resistance ; Exobiology ; Gale crater ; Geochemistry ; Geological history ; Geosciences (General) ; Grain size ; Groundwater ; Hematite ; Iron ; Jarosite ; Laboratories ; Mars ; Mars craters ; Mars rovers ; Mars surface ; Mineralogy ; Outcrops ; Rocks ; Saline solutions ; Salinity ; Sciences of the Universe ; Sedimentology ; Sediments ; Short wave radiation ; Silica ; Silicon dioxide ; Slopes ; Smectites ; X‐ray diffraction</subject><ispartof>Journal of geophysical research. Planets, 2020-09, Vol.125 (9), p.n/a</ispartof><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</citedby><cites>FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</cites><orcidid>0000-0002-3036-170X ; 0000-0001-5533-6490 ; 0000-0002-8073-2839 ; 0000-0003-1413-4002 ; 0000-0003-4163-8644 ; 0000-0002-0608-1249 ; 0000-0002-6999-0028 ; 0000-0001-6725-0555 ; 0000-0002-6827-5831 ; 0000-0003-4080-4997 ; 0000-0002-6628-6297 ; 0000-0001-7661-2626 ; 0000-0002-5174-6297 ; 0000-0003-4017-5158 ; 0000-0003-2410-0412 ; 0000-0003-0567-8876 ; 0000-0001-9120-2991 ; 0000-0002-1712-8057 ; 0000-0001-7928-834X ; 0000-0001-9185-6768 ; 0000-0002-0703-3951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2019JE006306$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2019JE006306$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,796,881,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04767594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rampe, E. B.</creatorcontrib><creatorcontrib>Bristow, T. F.</creatorcontrib><creatorcontrib>Morris, R. V.</creatorcontrib><creatorcontrib>Morrison, S. M.</creatorcontrib><creatorcontrib>Achilles, C. N.</creatorcontrib><creatorcontrib>Ming, D. W.</creatorcontrib><creatorcontrib>Vaniman, D. T.</creatorcontrib><creatorcontrib>Blake, D. F.</creatorcontrib><creatorcontrib>Tu, V. M.</creatorcontrib><creatorcontrib>Chipera, S. J.</creatorcontrib><creatorcontrib>Yen, A. S.</creatorcontrib><creatorcontrib>Peretyazhko, T. S.</creatorcontrib><creatorcontrib>Downs, R. T.</creatorcontrib><creatorcontrib>Hazen, R. M.</creatorcontrib><creatorcontrib>Treiman, A. H.</creatorcontrib><creatorcontrib>Grotzinger, J. P.</creatorcontrib><creatorcontrib>Castle, N.</creatorcontrib><creatorcontrib>Craig, P. I.</creatorcontrib><creatorcontrib>Marais, D. J. Des</creatorcontrib><creatorcontrib>Thorpe, M. T.</creatorcontrib><creatorcontrib>Walroth, R. C.</creatorcontrib><creatorcontrib>Downs, G. W.</creatorcontrib><creatorcontrib>Fraeman, A. A.</creatorcontrib><creatorcontrib>Siebach, K. L.</creatorcontrib><creatorcontrib>Gellert, R.</creatorcontrib><creatorcontrib>Lafuente, B.</creatorcontrib><creatorcontrib>McAdam, A. C.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Sutter, B.</creatorcontrib><creatorcontrib>Salvatore, M. R.</creatorcontrib><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><title>Journal of geophysical research. Planets</title><description>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</description><subject>aqueous alteration</subject><subject>Astrophysics</subject><subject>Cementing</subject><subject>CheMin</subject><subject>Crystallization</subject><subject>Curiosity (Mars rover)</subject><subject>Diagenesis</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth Sciences</subject><subject>Erosion resistance</subject><subject>Exobiology</subject><subject>Gale crater</subject><subject>Geochemistry</subject><subject>Geological history</subject><subject>Geosciences (General)</subject><subject>Grain size</subject><subject>Groundwater</subject><subject>Hematite</subject><subject>Iron</subject><subject>Jarosite</subject><subject>Laboratories</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars rovers</subject><subject>Mars surface</subject><subject>Mineralogy</subject><subject>Outcrops</subject><subject>Rocks</subject><subject>Saline solutions</subject><subject>Salinity</subject><subject>Sciences of the Universe</subject><subject>Sedimentology</subject><subject>Sediments</subject><subject>Short wave radiation</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slopes</subject><subject>Smectites</subject><subject>X‐ray diffraction</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1LAzEQxRdRsNTePHoIeBJcnSS7yeZYSu0HLWL9uIbsbtJuaTc12Sr9701ZFU_OZR4zv_cYJoouMdxhIOKeABbTIQCjwE6iDsFMxAIDnP5oEPw86nm_hlBZGGHaiZ7mVa2d2tjlAVmD3oJGi31e1WhRlUuNjLNb1Kw0mivn0XNR6brQaKZy61Rj3QENVjpEoEntG7ff6rq5iM6M2njd--7d6PVh-DIYx7PH0WTQn8UqpYTGJU9LUXANILQpcJqJPGF5RvKy0CkJW6JTEEIYkWBecJ4JrBRnJi2VMUww2o1u2tyV2sidq7bKHaRVlRz3Z_I4g4QznorkAwf2umV3zr7vtW_k2u5dHc6TJEkYh4wAD9RtSxXOeu-0-Y3FII8_ln9_HHDa4p_VRh_-ZeV0tBgSTDMaXFetq1Zeybpx4QQgkALgjFD6BbU_gvc</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Rampe, E. B.</creator><creator>Bristow, T. F.</creator><creator>Morris, R. V.</creator><creator>Morrison, S. M.</creator><creator>Achilles, C. N.</creator><creator>Ming, D. W.</creator><creator>Vaniman, D. T.</creator><creator>Blake, D. F.</creator><creator>Tu, V. M.</creator><creator>Chipera, S. J.</creator><creator>Yen, A. S.</creator><creator>Peretyazhko, T. S.</creator><creator>Downs, R. T.</creator><creator>Hazen, R. M.</creator><creator>Treiman, A. H.</creator><creator>Grotzinger, J. P.</creator><creator>Castle, N.</creator><creator>Craig, P. I.</creator><creator>Marais, D. J. Des</creator><creator>Thorpe, M. T.</creator><creator>Walroth, R. C.</creator><creator>Downs, G. W.</creator><creator>Fraeman, A. A.</creator><creator>Siebach, K. L.</creator><creator>Gellert, R.</creator><creator>Lafuente, B.</creator><creator>McAdam, A. C.</creator><creator>Meslin, P.-Y.</creator><creator>Sutter, B.</creator><creator>Salvatore, M. R.</creator><general>American Geophysical Union and Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>CYE</scope><scope>CYI</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3036-170X</orcidid><orcidid>https://orcid.org/0000-0001-5533-6490</orcidid><orcidid>https://orcid.org/0000-0002-8073-2839</orcidid><orcidid>https://orcid.org/0000-0003-1413-4002</orcidid><orcidid>https://orcid.org/0000-0003-4163-8644</orcidid><orcidid>https://orcid.org/0000-0002-0608-1249</orcidid><orcidid>https://orcid.org/0000-0002-6999-0028</orcidid><orcidid>https://orcid.org/0000-0001-6725-0555</orcidid><orcidid>https://orcid.org/0000-0002-6827-5831</orcidid><orcidid>https://orcid.org/0000-0003-4080-4997</orcidid><orcidid>https://orcid.org/0000-0002-6628-6297</orcidid><orcidid>https://orcid.org/0000-0001-7661-2626</orcidid><orcidid>https://orcid.org/0000-0002-5174-6297</orcidid><orcidid>https://orcid.org/0000-0003-4017-5158</orcidid><orcidid>https://orcid.org/0000-0003-2410-0412</orcidid><orcidid>https://orcid.org/0000-0003-0567-8876</orcidid><orcidid>https://orcid.org/0000-0001-9120-2991</orcidid><orcidid>https://orcid.org/0000-0002-1712-8057</orcidid><orcidid>https://orcid.org/0000-0001-7928-834X</orcidid><orcidid>https://orcid.org/0000-0001-9185-6768</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid></search><sort><creationdate>202009</creationdate><title>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</title><author>Rampe, E. B. ; Bristow, T. F. ; Morris, R. V. ; Morrison, S. M. ; Achilles, C. N. ; Ming, D. W. ; Vaniman, D. T. ; Blake, D. F. ; Tu, V. M. ; Chipera, S. J. ; Yen, A. S. ; Peretyazhko, T. S. ; Downs, R. T. ; Hazen, R. M. ; Treiman, A. H. ; Grotzinger, J. P. ; Castle, N. ; Craig, P. I. ; Marais, D. J. Des ; Thorpe, M. T. ; Walroth, R. C. ; Downs, G. W. ; Fraeman, A. A. ; Siebach, K. L. ; Gellert, R. ; Lafuente, B. ; McAdam, A. C. ; Meslin, P.-Y. ; Sutter, B. ; Salvatore, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5323-d75d9c7e009efc1589b46b82bdce52d752e50999f9417c77891aa76f5daff6963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aqueous alteration</topic><topic>Astrophysics</topic><topic>Cementing</topic><topic>CheMin</topic><topic>Crystallization</topic><topic>Curiosity (Mars rover)</topic><topic>Diagenesis</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth Sciences</topic><topic>Erosion resistance</topic><topic>Exobiology</topic><topic>Gale crater</topic><topic>Geochemistry</topic><topic>Geological history</topic><topic>Geosciences (General)</topic><topic>Grain size</topic><topic>Groundwater</topic><topic>Hematite</topic><topic>Iron</topic><topic>Jarosite</topic><topic>Laboratories</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars rovers</topic><topic>Mars surface</topic><topic>Mineralogy</topic><topic>Outcrops</topic><topic>Rocks</topic><topic>Saline solutions</topic><topic>Salinity</topic><topic>Sciences of the Universe</topic><topic>Sedimentology</topic><topic>Sediments</topic><topic>Short wave radiation</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slopes</topic><topic>Smectites</topic><topic>X‐ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rampe, E. B.</creatorcontrib><creatorcontrib>Bristow, T. F.</creatorcontrib><creatorcontrib>Morris, R. V.</creatorcontrib><creatorcontrib>Morrison, S. M.</creatorcontrib><creatorcontrib>Achilles, C. N.</creatorcontrib><creatorcontrib>Ming, D. W.</creatorcontrib><creatorcontrib>Vaniman, D. T.</creatorcontrib><creatorcontrib>Blake, D. F.</creatorcontrib><creatorcontrib>Tu, V. M.</creatorcontrib><creatorcontrib>Chipera, S. J.</creatorcontrib><creatorcontrib>Yen, A. S.</creatorcontrib><creatorcontrib>Peretyazhko, T. S.</creatorcontrib><creatorcontrib>Downs, R. T.</creatorcontrib><creatorcontrib>Hazen, R. M.</creatorcontrib><creatorcontrib>Treiman, A. H.</creatorcontrib><creatorcontrib>Grotzinger, J. P.</creatorcontrib><creatorcontrib>Castle, N.</creatorcontrib><creatorcontrib>Craig, P. I.</creatorcontrib><creatorcontrib>Marais, D. J. Des</creatorcontrib><creatorcontrib>Thorpe, M. T.</creatorcontrib><creatorcontrib>Walroth, R. C.</creatorcontrib><creatorcontrib>Downs, G. W.</creatorcontrib><creatorcontrib>Fraeman, A. A.</creatorcontrib><creatorcontrib>Siebach, K. L.</creatorcontrib><creatorcontrib>Gellert, R.</creatorcontrib><creatorcontrib>Lafuente, B.</creatorcontrib><creatorcontrib>McAdam, A. C.</creatorcontrib><creatorcontrib>Meslin, P.-Y.</creatorcontrib><creatorcontrib>Sutter, B.</creatorcontrib><creatorcontrib>Salvatore, M. R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rampe, E. B.</au><au>Bristow, T. F.</au><au>Morris, R. V.</au><au>Morrison, S. M.</au><au>Achilles, C. N.</au><au>Ming, D. W.</au><au>Vaniman, D. T.</au><au>Blake, D. F.</au><au>Tu, V. M.</au><au>Chipera, S. J.</au><au>Yen, A. S.</au><au>Peretyazhko, T. S.</au><au>Downs, R. T.</au><au>Hazen, R. M.</au><au>Treiman, A. H.</au><au>Grotzinger, J. P.</au><au>Castle, N.</au><au>Craig, P. I.</au><au>Marais, D. J. Des</au><au>Thorpe, M. T.</au><au>Walroth, R. C.</au><au>Downs, G. W.</au><au>Fraeman, A. A.</au><au>Siebach, K. L.</au><au>Gellert, R.</au><au>Lafuente, B.</au><au>McAdam, A. C.</au><au>Meslin, P.-Y.</au><au>Sutter, B.</au><au>Salvatore, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2020-09</date><risdate>2020</risdate><volume>125</volume><issue>9</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Vera Rubin ridge (VRR) is an erosion-resistant feature on the northwestern slope of Mount Sharp in Gale crater, Mars, and orbital visible/short-wave infrared measurements indicate it contains red-colored hematite. The Mars Science Laboratory Curiosity rover performed an extensive campaign on VRR to study its mineralogy, geochemistry, and sedimentology to determine the depositional and diagenetic history of the ridge and constrain the processes by which the hematite could have formed. X-ray diffraction (XRD) data from the CheMin instrument of four samples drilled on and below VRR demonstrate differences in iron, phyllosilicate, and sulfate mineralogy and hematite grain size. Hematite is common across the ridge, and its detection in a gray-colored outcrop suggested localized regions with coarse-grained hematite, which commonly forms from warm fluids. Broad XRD peaks for hematite in one sample below VRR and the abundance of FeOT in the amorphous component suggest the presence of nano-crystalline hematite and amorphous Fe oxides/oxyhydroxides. Well-crystalline akaganeite and jarosite are present in two samples drilled from VRR, indicating at least limited alteration by acid-saline fluids. Collapsed nontronite is present below VRR, but samples from VRR contain phyllosilicate with d(001) = 9.6 Å, possibly from ferripyrophyllite or an acid-altered smectite. The most likely cementing agents creating the ridge are hematite and opaline silica. We hypothesize late diagenesis can explain much of the mineralogical variation on the ridge, where multiple fluid episodes with variable pH, salinity, and temperature altered the rocks, causing the precipitation and crystallization of phases that are not otherwise in equilibrium.</abstract><cop>Johnson Space Center</cop><pub>American Geophysical Union and Wiley</pub><doi>10.1029/2019JE006306</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-3036-170X</orcidid><orcidid>https://orcid.org/0000-0001-5533-6490</orcidid><orcidid>https://orcid.org/0000-0002-8073-2839</orcidid><orcidid>https://orcid.org/0000-0003-1413-4002</orcidid><orcidid>https://orcid.org/0000-0003-4163-8644</orcidid><orcidid>https://orcid.org/0000-0002-0608-1249</orcidid><orcidid>https://orcid.org/0000-0002-6999-0028</orcidid><orcidid>https://orcid.org/0000-0001-6725-0555</orcidid><orcidid>https://orcid.org/0000-0002-6827-5831</orcidid><orcidid>https://orcid.org/0000-0003-4080-4997</orcidid><orcidid>https://orcid.org/0000-0002-6628-6297</orcidid><orcidid>https://orcid.org/0000-0001-7661-2626</orcidid><orcidid>https://orcid.org/0000-0002-5174-6297</orcidid><orcidid>https://orcid.org/0000-0003-4017-5158</orcidid><orcidid>https://orcid.org/0000-0003-2410-0412</orcidid><orcidid>https://orcid.org/0000-0003-0567-8876</orcidid><orcidid>https://orcid.org/0000-0001-9120-2991</orcidid><orcidid>https://orcid.org/0000-0002-1712-8057</orcidid><orcidid>https://orcid.org/0000-0001-7928-834X</orcidid><orcidid>https://orcid.org/0000-0001-9185-6768</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9097 |
ispartof | Journal of geophysical research. Planets, 2020-09, Vol.125 (9), p.n/a |
issn | 2169-9097 2169-9100 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04767594v1 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; NASA Technical Reports Server; Alma/SFX Local Collection |
subjects | aqueous alteration Astrophysics Cementing CheMin Crystallization Curiosity (Mars rover) Diagenesis Earth and Planetary Astrophysics Earth Sciences Erosion resistance Exobiology Gale crater Geochemistry Geological history Geosciences (General) Grain size Groundwater Hematite Iron Jarosite Laboratories Mars Mars craters Mars rovers Mars surface Mineralogy Outcrops Rocks Saline solutions Salinity Sciences of the Universe Sedimentology Sediments Short wave radiation Silica Silicon dioxide Slopes Smectites X‐ray diffraction |
title | Mineralogy of Vera Rubin Ridge from the Mars Science Laboratory CheMin Instrument |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineralogy%20of%20Vera%20Rubin%20Ridge%20from%20the%20Mars%20Science%20Laboratory%20CheMin%20Instrument&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Rampe,%20E.%20B.&rft.date=2020-09&rft.volume=125&rft.issue=9&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2019JE006306&rft_dat=%3Cproquest_hal_p%3E2446708207%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446708207&rft_id=info:pmid/&rfr_iscdi=true |