Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method
•Continuation of periodic orbits and assessment of their stability.•Stability of periodic orbits is assessed with the Hill's method.•Evaluation of sensitivity maps, e.g. structural sensitivity, for physical instability identification and open-loop control.•Harmonic reconstruction of sensitivity...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2021-09, Vol.440, p.110403, Article 110403 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110403 |
container_title | Journal of computational physics |
container_volume | 440 |
creator | Sierra, J. Jolivet, P. Giannetti, F. Citro, V. |
description | •Continuation of periodic orbits and assessment of their stability.•Stability of periodic orbits is assessed with the Hill's method.•Evaluation of sensitivity maps, e.g. structural sensitivity, for physical instability identification and open-loop control.•Harmonic reconstruction of sensitivity maps.•Efficient preconditioned Newton–Krylov strategy for the resolution of the nonlinear residual equation.
Sensitivity of periodic solutions of time-dependent partial differential equations is commonly computed using time-consuming direct and adjoint time integrations. Particular attention must be provided to the periodicity condition in order to obtain accurate results. Furthermore, stabilization techniques are required if the orbit is unstable. The present article aims to propose an alternative methodology to evaluate the sensitivity of periodic flows via the Fourier–Galerkin method. Unstable periodic orbits are directly computed and continued without any stabilizing technique. The stability of the periodic state is determined via Hill's method: the frequency-domain counterpart of Floquet analysis. Sensitivity maps, used for open-loop control and physical instability identification, are directly evaluated using the adjoint of the projected operator. Furthermore, we propose an efficient and robust iterative algorithm for the resolution of underlying linear systems. First of all, the new approach is applied on the Feigenbaum route to chaos in the Lorenz system. Second, the transition to a three-dimensional state in the periodic vortex-shedding past a circular cylinder is investigated. Such a flow case allows the validation of the sensitivity approach by a systematic comparison with previous results presented in the literature. Finally, the transition to a quasi-periodic state past two side-by-side cylinders is considered. These last two cases also served to test the performance of the proposed iterative algorithm. |
doi_str_mv | 10.1016/j.jcp.2021.110403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04751934v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121002989</els_id><sourcerecordid>2549035535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-935ee7cfafd2b34ccc7a7fca153bd523f792edec1c5f8539fecfac1d77e4c3f93</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWP88gLeAJw9bk82m2-CpFNsKBS_qNWSTCc3abmqSFnrzHXxDn8SUFY-eBma-3zDzIXRDyZASOrpvh63eDktS0iGlpCLsBA0oEaQoazo6RQOSJ4UQgp6jixhbQsiYV-MBepuY1rsuFY2KYHCELrrk9i4dsOrU-hBdxN7iLQTnjdPYh8aliJsDTivAM78LDsL359dcrSG8uw5vIK28uUJnVq0jXP_WS_Q6e3yZLorl8_xpOlkWmnGRCsE4QK2tsqZsWKW1rlVttaKcNYaXzNaiBAOaam7HnAkLmdXU1DVUmlnBLtFdv3el1nIb3EaFg_TKycVkKY89UtWcClbtaWZve3Yb_McOYpJtPj8_GWXJK0EY54xnivaUDj7GAPZvLSXyqFq2MquWR9WyV50zD30G8qv7LERG7aDTYFwAnaTx7p_0D6NAiJs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549035535</pqid></control><display><type>article</type><title>Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sierra, J. ; Jolivet, P. ; Giannetti, F. ; Citro, V.</creator><creatorcontrib>Sierra, J. ; Jolivet, P. ; Giannetti, F. ; Citro, V.</creatorcontrib><description>•Continuation of periodic orbits and assessment of their stability.•Stability of periodic orbits is assessed with the Hill's method.•Evaluation of sensitivity maps, e.g. structural sensitivity, for physical instability identification and open-loop control.•Harmonic reconstruction of sensitivity maps.•Efficient preconditioned Newton–Krylov strategy for the resolution of the nonlinear residual equation.
Sensitivity of periodic solutions of time-dependent partial differential equations is commonly computed using time-consuming direct and adjoint time integrations. Particular attention must be provided to the periodicity condition in order to obtain accurate results. Furthermore, stabilization techniques are required if the orbit is unstable. The present article aims to propose an alternative methodology to evaluate the sensitivity of periodic flows via the Fourier–Galerkin method. Unstable periodic orbits are directly computed and continued without any stabilizing technique. The stability of the periodic state is determined via Hill's method: the frequency-domain counterpart of Floquet analysis. Sensitivity maps, used for open-loop control and physical instability identification, are directly evaluated using the adjoint of the projected operator. Furthermore, we propose an efficient and robust iterative algorithm for the resolution of underlying linear systems. First of all, the new approach is applied on the Feigenbaum route to chaos in the Lorenz system. Second, the transition to a three-dimensional state in the periodic vortex-shedding past a circular cylinder is investigated. Such a flow case allows the validation of the sensitivity approach by a systematic comparison with previous results presented in the literature. Finally, the transition to a quasi-periodic state past two side-by-side cylinders is considered. These last two cases also served to test the performance of the proposed iterative algorithm.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110403</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Circular cylinders ; Computational fluid dynamics ; Computational physics ; Control stability ; Floquet stability analysis ; Fluid Dynamics ; Fourier–Galerkin method ; Galerkin method ; Iterative algorithms ; Iterative methods ; Linear systems ; Lorenz system ; Orbits ; Partial differential equations ; Physics ; Sensitivity ; Sensitivity analysis ; Stability analysis ; Time dependence ; Unstable periodic orbits</subject><ispartof>Journal of computational physics, 2021-09, Vol.440, p.110403, Article 110403</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Sep 1, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-935ee7cfafd2b34ccc7a7fca153bd523f792edec1c5f8539fecfac1d77e4c3f93</citedby><cites>FETCH-LOGICAL-c359t-935ee7cfafd2b34ccc7a7fca153bd523f792edec1c5f8539fecfac1d77e4c3f93</cites><orcidid>0000-0001-6036-5093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110403$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04751934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sierra, J.</creatorcontrib><creatorcontrib>Jolivet, P.</creatorcontrib><creatorcontrib>Giannetti, F.</creatorcontrib><creatorcontrib>Citro, V.</creatorcontrib><title>Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method</title><title>Journal of computational physics</title><description>•Continuation of periodic orbits and assessment of their stability.•Stability of periodic orbits is assessed with the Hill's method.•Evaluation of sensitivity maps, e.g. structural sensitivity, for physical instability identification and open-loop control.•Harmonic reconstruction of sensitivity maps.•Efficient preconditioned Newton–Krylov strategy for the resolution of the nonlinear residual equation.
Sensitivity of periodic solutions of time-dependent partial differential equations is commonly computed using time-consuming direct and adjoint time integrations. Particular attention must be provided to the periodicity condition in order to obtain accurate results. Furthermore, stabilization techniques are required if the orbit is unstable. The present article aims to propose an alternative methodology to evaluate the sensitivity of periodic flows via the Fourier–Galerkin method. Unstable periodic orbits are directly computed and continued without any stabilizing technique. The stability of the periodic state is determined via Hill's method: the frequency-domain counterpart of Floquet analysis. Sensitivity maps, used for open-loop control and physical instability identification, are directly evaluated using the adjoint of the projected operator. Furthermore, we propose an efficient and robust iterative algorithm for the resolution of underlying linear systems. First of all, the new approach is applied on the Feigenbaum route to chaos in the Lorenz system. Second, the transition to a three-dimensional state in the periodic vortex-shedding past a circular cylinder is investigated. Such a flow case allows the validation of the sensitivity approach by a systematic comparison with previous results presented in the literature. Finally, the transition to a quasi-periodic state past two side-by-side cylinders is considered. These last two cases also served to test the performance of the proposed iterative algorithm.</description><subject>Circular cylinders</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Control stability</subject><subject>Floquet stability analysis</subject><subject>Fluid Dynamics</subject><subject>Fourier–Galerkin method</subject><subject>Galerkin method</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Lorenz system</subject><subject>Orbits</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Time dependence</subject><subject>Unstable periodic orbits</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWP88gLeAJw9bk82m2-CpFNsKBS_qNWSTCc3abmqSFnrzHXxDn8SUFY-eBma-3zDzIXRDyZASOrpvh63eDktS0iGlpCLsBA0oEaQoazo6RQOSJ4UQgp6jixhbQsiYV-MBepuY1rsuFY2KYHCELrrk9i4dsOrU-hBdxN7iLQTnjdPYh8aliJsDTivAM78LDsL359dcrSG8uw5vIK28uUJnVq0jXP_WS_Q6e3yZLorl8_xpOlkWmnGRCsE4QK2tsqZsWKW1rlVttaKcNYaXzNaiBAOaam7HnAkLmdXU1DVUmlnBLtFdv3el1nIb3EaFg_TKycVkKY89UtWcClbtaWZve3Yb_McOYpJtPj8_GWXJK0EY54xnivaUDj7GAPZvLSXyqFq2MquWR9WyV50zD30G8qv7LERG7aDTYFwAnaTx7p_0D6NAiJs</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sierra, J.</creator><creator>Jolivet, P.</creator><creator>Giannetti, F.</creator><creator>Citro, V.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6036-5093</orcidid></search><sort><creationdate>20210901</creationdate><title>Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method</title><author>Sierra, J. ; Jolivet, P. ; Giannetti, F. ; Citro, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-935ee7cfafd2b34ccc7a7fca153bd523f792edec1c5f8539fecfac1d77e4c3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circular cylinders</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Control stability</topic><topic>Floquet stability analysis</topic><topic>Fluid Dynamics</topic><topic>Fourier–Galerkin method</topic><topic>Galerkin method</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Lorenz system</topic><topic>Orbits</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Time dependence</topic><topic>Unstable periodic orbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sierra, J.</creatorcontrib><creatorcontrib>Jolivet, P.</creatorcontrib><creatorcontrib>Giannetti, F.</creatorcontrib><creatorcontrib>Citro, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sierra, J.</au><au>Jolivet, P.</au><au>Giannetti, F.</au><au>Citro, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method</atitle><jtitle>Journal of computational physics</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>440</volume><spage>110403</spage><pages>110403-</pages><artnum>110403</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Continuation of periodic orbits and assessment of their stability.•Stability of periodic orbits is assessed with the Hill's method.•Evaluation of sensitivity maps, e.g. structural sensitivity, for physical instability identification and open-loop control.•Harmonic reconstruction of sensitivity maps.•Efficient preconditioned Newton–Krylov strategy for the resolution of the nonlinear residual equation.
Sensitivity of periodic solutions of time-dependent partial differential equations is commonly computed using time-consuming direct and adjoint time integrations. Particular attention must be provided to the periodicity condition in order to obtain accurate results. Furthermore, stabilization techniques are required if the orbit is unstable. The present article aims to propose an alternative methodology to evaluate the sensitivity of periodic flows via the Fourier–Galerkin method. Unstable periodic orbits are directly computed and continued without any stabilizing technique. The stability of the periodic state is determined via Hill's method: the frequency-domain counterpart of Floquet analysis. Sensitivity maps, used for open-loop control and physical instability identification, are directly evaluated using the adjoint of the projected operator. Furthermore, we propose an efficient and robust iterative algorithm for the resolution of underlying linear systems. First of all, the new approach is applied on the Feigenbaum route to chaos in the Lorenz system. Second, the transition to a three-dimensional state in the periodic vortex-shedding past a circular cylinder is investigated. Such a flow case allows the validation of the sensitivity approach by a systematic comparison with previous results presented in the literature. Finally, the transition to a quasi-periodic state past two side-by-side cylinders is considered. These last two cases also served to test the performance of the proposed iterative algorithm.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110403</doi><orcidid>https://orcid.org/0000-0001-6036-5093</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2021-09, Vol.440, p.110403, Article 110403 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04751934v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Circular cylinders Computational fluid dynamics Computational physics Control stability Floquet stability analysis Fluid Dynamics Fourier–Galerkin method Galerkin method Iterative algorithms Iterative methods Linear systems Lorenz system Orbits Partial differential equations Physics Sensitivity Sensitivity analysis Stability analysis Time dependence Unstable periodic orbits |
title | Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint-based%20sensitivity%20analysis%20of%20periodic%20orbits%20by%20the%20Fourier%E2%80%93Galerkin%20method&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Sierra,%20J.&rft.date=2021-09-01&rft.volume=440&rft.spage=110403&rft.pages=110403-&rft.artnum=110403&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110403&rft_dat=%3Cproquest_hal_p%3E2549035535%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549035535&rft_id=info:pmid/&rft_els_id=S0021999121002989&rfr_iscdi=true |