Advancing thermal performance through vortex generators morphing
Abstract The design of rigid vortex generators (RVG) influences the thermal performance of various technologies. We employed Discrete Adjoint-Based Optimization to show the optimal development of vortex generators. Under turbulent flow conditions, different bi-objective functions on the RVG design w...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-01, Vol.13 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Scientific reports |
container_volume | 13 |
creator | Ali, Samer Dbouk, Talib Wang, Guanghui Wang, Dingbiao Drikakis, Dimitris |
description | Abstract The design of rigid vortex generators (RVG) influences the thermal performance of various technologies. We employed Discrete Adjoint-Based Optimization to show the optimal development of vortex generators. Under turbulent flow conditions, different bi-objective functions on the RVG design were examined. Specifically, we aimed at an optimal RVG shape that minimizes the pressure drop and maximizes the local heat transfer in a rectangular channel. We show that an optimal design of an RVG can be obtained using computational fluid dynamics in conjunction with the Pareto Front at a computational cost of the order ~ O ( 10^-1) . We obtained three essential vortex generator shapes based on the RVG morphing technique. Compared to the baseline geometry of a delta winglet pair DWP, the first morphed design reduced the pressure drop by 39 % , however, at the expense of a 21 % reduction in the Nusselt number. The second vortex generator design enhanced the heat transfer by 18 % , however, at the cost of a significant increase in pressure drop of about 40 % . The final morphed design achieved the highest thermal performance factor of 1.28, representing a heat transfer enhancement of 6 % with a moderate increase in pressure drop of about 13 % compared to DWP vortex generators. Furthermore, we investigated the effect of introducing different size holes on the mass reduction of vortex generators and their thermal performances. The mass of vortex generators can be reduced by $$9\%$$ 9 % and with an increase of 7 % in thermal performance factor concerning the DWP baseline. The findings of this study will lead to highly efficient lightweight heat exchangers. |
doi_str_mv | 10.1038/s41598-022-25516-4 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04746771v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04746771v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04746771v13</originalsourceid><addsrcrecordid>eNqVizsLwjAYRYMoWLR_wCmrQzRJkz42iygdHN1DqOlD2qZ8qUX_vRUcXL3LPRzuRWjD6I7RIN47wWQSE8o54VKykIgZ8jgVkvCA8_kPL5Hv3J1OkTwRLPHQIb2NusvrrsRDZaDVDe4NFHaiLjeTA_soKzxaGMwTl6YzoAcLDrcW-mq6rdGi0I0z_rdXaHs-XY8ZqXSjeqhbDS9lda2y9KI-jopIhFHERhb8s30DyP1FRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advancing thermal performance through vortex generators morphing</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Ali, Samer ; Dbouk, Talib ; Wang, Guanghui ; Wang, Dingbiao ; Drikakis, Dimitris</creator><creatorcontrib>Ali, Samer ; Dbouk, Talib ; Wang, Guanghui ; Wang, Dingbiao ; Drikakis, Dimitris</creatorcontrib><description>Abstract The design of rigid vortex generators (RVG) influences the thermal performance of various technologies. We employed Discrete Adjoint-Based Optimization to show the optimal development of vortex generators. Under turbulent flow conditions, different bi-objective functions on the RVG design were examined. Specifically, we aimed at an optimal RVG shape that minimizes the pressure drop and maximizes the local heat transfer in a rectangular channel. We show that an optimal design of an RVG can be obtained using computational fluid dynamics in conjunction with the Pareto Front at a computational cost of the order ~ O ( 10^-1) . We obtained three essential vortex generator shapes based on the RVG morphing technique. Compared to the baseline geometry of a delta winglet pair DWP, the first morphed design reduced the pressure drop by 39 % , however, at the expense of a 21 % reduction in the Nusselt number. The second vortex generator design enhanced the heat transfer by 18 % , however, at the cost of a significant increase in pressure drop of about 40 % . The final morphed design achieved the highest thermal performance factor of 1.28, representing a heat transfer enhancement of 6 % with a moderate increase in pressure drop of about 13 % compared to DWP vortex generators. Furthermore, we investigated the effect of introducing different size holes on the mass reduction of vortex generators and their thermal performances. The mass of vortex generators can be reduced by $$9\%$$ 9 % and with an increase of 7 % in thermal performance factor concerning the DWP baseline. The findings of this study will lead to highly efficient lightweight heat exchangers.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-022-25516-4</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><subject>Engineering Sciences ; Physics</subject><ispartof>Scientific reports, 2023-01, Vol.13 (1)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04746771$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Samer</creatorcontrib><creatorcontrib>Dbouk, Talib</creatorcontrib><creatorcontrib>Wang, Guanghui</creatorcontrib><creatorcontrib>Wang, Dingbiao</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><title>Advancing thermal performance through vortex generators morphing</title><title>Scientific reports</title><description>Abstract The design of rigid vortex generators (RVG) influences the thermal performance of various technologies. We employed Discrete Adjoint-Based Optimization to show the optimal development of vortex generators. Under turbulent flow conditions, different bi-objective functions on the RVG design were examined. Specifically, we aimed at an optimal RVG shape that minimizes the pressure drop and maximizes the local heat transfer in a rectangular channel. We show that an optimal design of an RVG can be obtained using computational fluid dynamics in conjunction with the Pareto Front at a computational cost of the order ~ O ( 10^-1) . We obtained three essential vortex generator shapes based on the RVG morphing technique. Compared to the baseline geometry of a delta winglet pair DWP, the first morphed design reduced the pressure drop by 39 % , however, at the expense of a 21 % reduction in the Nusselt number. The second vortex generator design enhanced the heat transfer by 18 % , however, at the cost of a significant increase in pressure drop of about 40 % . The final morphed design achieved the highest thermal performance factor of 1.28, representing a heat transfer enhancement of 6 % with a moderate increase in pressure drop of about 13 % compared to DWP vortex generators. Furthermore, we investigated the effect of introducing different size holes on the mass reduction of vortex generators and their thermal performances. The mass of vortex generators can be reduced by $$9\%$$ 9 % and with an increase of 7 % in thermal performance factor concerning the DWP baseline. The findings of this study will lead to highly efficient lightweight heat exchangers.</description><subject>Engineering Sciences</subject><subject>Physics</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVizsLwjAYRYMoWLR_wCmrQzRJkz42iygdHN1DqOlD2qZ8qUX_vRUcXL3LPRzuRWjD6I7RIN47wWQSE8o54VKykIgZ8jgVkvCA8_kPL5Hv3J1OkTwRLPHQIb2NusvrrsRDZaDVDe4NFHaiLjeTA_soKzxaGMwTl6YzoAcLDrcW-mq6rdGi0I0z_rdXaHs-XY8ZqXSjeqhbDS9lda2y9KI-jopIhFHERhb8s30DyP1FRQ</recordid><startdate>20230107</startdate><enddate>20230107</enddate><creator>Ali, Samer</creator><creator>Dbouk, Talib</creator><creator>Wang, Guanghui</creator><creator>Wang, Dingbiao</creator><creator>Drikakis, Dimitris</creator><general>Nature Publishing Group</general><scope>1XC</scope></search><sort><creationdate>20230107</creationdate><title>Advancing thermal performance through vortex generators morphing</title><author>Ali, Samer ; Dbouk, Talib ; Wang, Guanghui ; Wang, Dingbiao ; Drikakis, Dimitris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04746771v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Engineering Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Samer</creatorcontrib><creatorcontrib>Dbouk, Talib</creatorcontrib><creatorcontrib>Wang, Guanghui</creatorcontrib><creatorcontrib>Wang, Dingbiao</creatorcontrib><creatorcontrib>Drikakis, Dimitris</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Samer</au><au>Dbouk, Talib</au><au>Wang, Guanghui</au><au>Wang, Dingbiao</au><au>Drikakis, Dimitris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing thermal performance through vortex generators morphing</atitle><jtitle>Scientific reports</jtitle><date>2023-01-07</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Abstract The design of rigid vortex generators (RVG) influences the thermal performance of various technologies. We employed Discrete Adjoint-Based Optimization to show the optimal development of vortex generators. Under turbulent flow conditions, different bi-objective functions on the RVG design were examined. Specifically, we aimed at an optimal RVG shape that minimizes the pressure drop and maximizes the local heat transfer in a rectangular channel. We show that an optimal design of an RVG can be obtained using computational fluid dynamics in conjunction with the Pareto Front at a computational cost of the order ~ O ( 10^-1) . We obtained three essential vortex generator shapes based on the RVG morphing technique. Compared to the baseline geometry of a delta winglet pair DWP, the first morphed design reduced the pressure drop by 39 % , however, at the expense of a 21 % reduction in the Nusselt number. The second vortex generator design enhanced the heat transfer by 18 % , however, at the cost of a significant increase in pressure drop of about 40 % . The final morphed design achieved the highest thermal performance factor of 1.28, representing a heat transfer enhancement of 6 % with a moderate increase in pressure drop of about 13 % compared to DWP vortex generators. Furthermore, we investigated the effect of introducing different size holes on the mass reduction of vortex generators and their thermal performances. The mass of vortex generators can be reduced by $$9\%$$ 9 % and with an increase of 7 % in thermal performance factor concerning the DWP baseline. The findings of this study will lead to highly efficient lightweight heat exchangers.</abstract><pub>Nature Publishing Group</pub><doi>10.1038/s41598-022-25516-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-01, Vol.13 (1) |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04746771v1 |
source | Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | Engineering Sciences Physics |
title | Advancing thermal performance through vortex generators morphing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20thermal%20performance%20through%20vortex%20generators%20morphing&rft.jtitle=Scientific%20reports&rft.au=Ali,%20Samer&rft.date=2023-01-07&rft.volume=13&rft.issue=1&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-022-25516-4&rft_dat=%3Chal%3Eoai_HAL_hal_04746771v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |