Harnessing two-photon dissipation for enhanced quantum measurement and control

Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2024-09, Vol.22 (3), Article 034053
Hauptverfasser: Marquet, A., Dupouy, S., Réglade, U., Essig, A., Cohen, J., Albertinale, E., Bienfait, A., Peronnin, T., Jezouin, S., Lescanne, R., Huard, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review applied
container_volume 22
creator Marquet, A.
Dupouy, S.
Réglade, U.
Essig, A.
Cohen, J.
Albertinale, E.
Bienfait, A.
Peronnin, T.
Jezouin, S.
Lescanne, R.
Huard, B.
description Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.
doi_str_mv 10.1103/PhysRevApplied.22.034053
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04743642v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04743642v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMoOOb-Q1596LzJbdb6OIY6YaiIPocsubWVNqlJN9m_d2ND9OkcDudeDh9jXMBUCMCbl3qXXmk77_u2ITeVcgqYg8IzNpKIIitA3J7_8ZdsktInAAghFZQwYk9LEz2l1PgPPnyHrK_DEDx3zT7qzdDsfRUiJ18bb8nxr43xw6bjHZm0idSRH7jxjtvghxjaK3ZRmTbR5KRj9n5_97ZYZqvnh8fFfJVZgYiZQYkzdFKSs8JaddjswMDM2ZKoWluTl84qpWwl3LoSZVFQqRxIWZE1FnDMro9_a9PqPjadiTsdTKOX85U-ZJAXOc5yuRX7bnns2hhSilT9HgjQB4z6P0YtpT5ixB_e22vj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><source>American Physical Society Journals</source><creator>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</creator><creatorcontrib>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</creatorcontrib><description>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.22.034053</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Physics ; Quantum Physics</subject><ispartof>Physical review applied, 2024-09, Vol.22 (3), Article 034053</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</cites><orcidid>0000-0002-9848-3658 ; 0009-0002-8596-3887 ; 0009-0005-1014-5259 ; 0000-0002-0256-7604 ; 0000-0001-6025-1993 ; 0009-0009-7772-7092 ; 0000-0002-2927-1037 ; 0009-0009-5192-6413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04743642$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Dupouy, S.</creatorcontrib><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Essig, A.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Peronnin, T.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Huard, B.</creatorcontrib><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><title>Physical review applied</title><description>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</description><subject>Physics</subject><subject>Quantum Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMoOOb-Q1596LzJbdb6OIY6YaiIPocsubWVNqlJN9m_d2ND9OkcDudeDh9jXMBUCMCbl3qXXmk77_u2ITeVcgqYg8IzNpKIIitA3J7_8ZdsktInAAghFZQwYk9LEz2l1PgPPnyHrK_DEDx3zT7qzdDsfRUiJ18bb8nxr43xw6bjHZm0idSRH7jxjtvghxjaK3ZRmTbR5KRj9n5_97ZYZqvnh8fFfJVZgYiZQYkzdFKSs8JaddjswMDM2ZKoWluTl84qpWwl3LoSZVFQqRxIWZE1FnDMro9_a9PqPjadiTsdTKOX85U-ZJAXOc5yuRX7bnns2hhSilT9HgjQB4z6P0YtpT5ixB_e22vj</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Marquet, A.</creator><creator>Dupouy, S.</creator><creator>Réglade, U.</creator><creator>Essig, A.</creator><creator>Cohen, J.</creator><creator>Albertinale, E.</creator><creator>Bienfait, A.</creator><creator>Peronnin, T.</creator><creator>Jezouin, S.</creator><creator>Lescanne, R.</creator><creator>Huard, B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0009-0002-8596-3887</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0002-0256-7604</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0009-0009-7772-7092</orcidid><orcidid>https://orcid.org/0000-0002-2927-1037</orcidid><orcidid>https://orcid.org/0009-0009-5192-6413</orcidid></search><sort><creationdate>20240925</creationdate><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><author>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Dupouy, S.</creatorcontrib><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Essig, A.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Peronnin, T.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Huard, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquet, A.</au><au>Dupouy, S.</au><au>Réglade, U.</au><au>Essig, A.</au><au>Cohen, J.</au><au>Albertinale, E.</au><au>Bienfait, A.</au><au>Peronnin, T.</au><au>Jezouin, S.</au><au>Lescanne, R.</au><au>Huard, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing two-photon dissipation for enhanced quantum measurement and control</atitle><jtitle>Physical review applied</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><artnum>034053</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.22.034053</doi><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0009-0002-8596-3887</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0002-0256-7604</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0009-0009-7772-7092</orcidid><orcidid>https://orcid.org/0000-0002-2927-1037</orcidid><orcidid>https://orcid.org/0009-0009-5192-6413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-7019
ispartof Physical review applied, 2024-09, Vol.22 (3), Article 034053
issn 2331-7019
2331-7019
language eng
recordid cdi_hal_primary_oai_HAL_hal_04743642v1
source American Physical Society Journals
subjects Physics
Quantum Physics
title Harnessing two-photon dissipation for enhanced quantum measurement and control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20two-photon%20dissipation%20for%20enhanced%20quantum%20measurement%20and%20control&rft.jtitle=Physical%20review%20applied&rft.au=Marquet,%20A.&rft.date=2024-09-25&rft.volume=22&rft.issue=3&rft.artnum=034053&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.22.034053&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04743642v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true