Harnessing two-photon dissipation for enhanced quantum measurement and control
Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-n...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2024-09, Vol.22 (3), Article 034053 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review applied |
container_volume | 22 |
creator | Marquet, A. Dupouy, S. Réglade, U. Essig, A. Cohen, J. Albertinale, E. Bienfait, A. Peronnin, T. Jezouin, S. Lescanne, R. Huard, B. |
description | Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates. |
doi_str_mv | 10.1103/PhysRevApplied.22.034053 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04743642v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04743642v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMoOOb-Q1596LzJbdb6OIY6YaiIPocsubWVNqlJN9m_d2ND9OkcDudeDh9jXMBUCMCbl3qXXmk77_u2ITeVcgqYg8IzNpKIIitA3J7_8ZdsktInAAghFZQwYk9LEz2l1PgPPnyHrK_DEDx3zT7qzdDsfRUiJ18bb8nxr43xw6bjHZm0idSRH7jxjtvghxjaK3ZRmTbR5KRj9n5_97ZYZqvnh8fFfJVZgYiZQYkzdFKSs8JaddjswMDM2ZKoWluTl84qpWwl3LoSZVFQqRxIWZE1FnDMro9_a9PqPjadiTsdTKOX85U-ZJAXOc5yuRX7bnns2hhSilT9HgjQB4z6P0YtpT5ixB_e22vj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><source>American Physical Society Journals</source><creator>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</creator><creatorcontrib>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</creatorcontrib><description>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.22.034053</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Physics ; Quantum Physics</subject><ispartof>Physical review applied, 2024-09, Vol.22 (3), Article 034053</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</cites><orcidid>0000-0002-9848-3658 ; 0009-0002-8596-3887 ; 0009-0005-1014-5259 ; 0000-0002-0256-7604 ; 0000-0001-6025-1993 ; 0009-0009-7772-7092 ; 0000-0002-2927-1037 ; 0009-0009-5192-6413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04743642$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Dupouy, S.</creatorcontrib><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Essig, A.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Peronnin, T.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Huard, B.</creatorcontrib><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><title>Physical review applied</title><description>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</description><subject>Physics</subject><subject>Quantum Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMoOOb-Q1596LzJbdb6OIY6YaiIPocsubWVNqlJN9m_d2ND9OkcDudeDh9jXMBUCMCbl3qXXmk77_u2ITeVcgqYg8IzNpKIIitA3J7_8ZdsktInAAghFZQwYk9LEz2l1PgPPnyHrK_DEDx3zT7qzdDsfRUiJ18bb8nxr43xw6bjHZm0idSRH7jxjtvghxjaK3ZRmTbR5KRj9n5_97ZYZqvnh8fFfJVZgYiZQYkzdFKSs8JaddjswMDM2ZKoWluTl84qpWwl3LoSZVFQqRxIWZE1FnDMro9_a9PqPjadiTsdTKOX85U-ZJAXOc5yuRX7bnns2hhSilT9HgjQB4z6P0YtpT5ixB_e22vj</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Marquet, A.</creator><creator>Dupouy, S.</creator><creator>Réglade, U.</creator><creator>Essig, A.</creator><creator>Cohen, J.</creator><creator>Albertinale, E.</creator><creator>Bienfait, A.</creator><creator>Peronnin, T.</creator><creator>Jezouin, S.</creator><creator>Lescanne, R.</creator><creator>Huard, B.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0009-0002-8596-3887</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0002-0256-7604</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0009-0009-7772-7092</orcidid><orcidid>https://orcid.org/0000-0002-2927-1037</orcidid><orcidid>https://orcid.org/0009-0009-5192-6413</orcidid></search><sort><creationdate>20240925</creationdate><title>Harnessing two-photon dissipation for enhanced quantum measurement and control</title><author>Marquet, A. ; Dupouy, S. ; Réglade, U. ; Essig, A. ; Cohen, J. ; Albertinale, E. ; Bienfait, A. ; Peronnin, T. ; Jezouin, S. ; Lescanne, R. ; Huard, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1333-a32363d22edc1cc54053d0a06dc8eefbca48dc555cf1dbf1877e85d022fecac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquet, A.</creatorcontrib><creatorcontrib>Dupouy, S.</creatorcontrib><creatorcontrib>Réglade, U.</creatorcontrib><creatorcontrib>Essig, A.</creatorcontrib><creatorcontrib>Cohen, J.</creatorcontrib><creatorcontrib>Albertinale, E.</creatorcontrib><creatorcontrib>Bienfait, A.</creatorcontrib><creatorcontrib>Peronnin, T.</creatorcontrib><creatorcontrib>Jezouin, S.</creatorcontrib><creatorcontrib>Lescanne, R.</creatorcontrib><creatorcontrib>Huard, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquet, A.</au><au>Dupouy, S.</au><au>Réglade, U.</au><au>Essig, A.</au><au>Cohen, J.</au><au>Albertinale, E.</au><au>Bienfait, A.</au><au>Peronnin, T.</au><au>Jezouin, S.</au><au>Lescanne, R.</au><au>Huard, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing two-photon dissipation for enhanced quantum measurement and control</atitle><jtitle>Physical review applied</jtitle><date>2024-09-25</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><artnum>034053</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.22.034053</doi><orcidid>https://orcid.org/0000-0002-9848-3658</orcidid><orcidid>https://orcid.org/0009-0002-8596-3887</orcidid><orcidid>https://orcid.org/0009-0005-1014-5259</orcidid><orcidid>https://orcid.org/0000-0002-0256-7604</orcidid><orcidid>https://orcid.org/0000-0001-6025-1993</orcidid><orcidid>https://orcid.org/0009-0009-7772-7092</orcidid><orcidid>https://orcid.org/0000-0002-2927-1037</orcidid><orcidid>https://orcid.org/0009-0009-5192-6413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2024-09, Vol.22 (3), Article 034053 |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04743642v1 |
source | American Physical Society Journals |
subjects | Physics Quantum Physics |
title | Harnessing two-photon dissipation for enhanced quantum measurement and control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20two-photon%20dissipation%20for%20enhanced%20quantum%20measurement%20and%20control&rft.jtitle=Physical%20review%20applied&rft.au=Marquet,%20A.&rft.date=2024-09-25&rft.volume=22&rft.issue=3&rft.artnum=034053&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.22.034053&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04743642v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |