On Basic Feasible Functionals and the Interpretation Method

The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baillot, Patrick, Dal Lago, Ugo, Kop, Cynthia, Vale, Deivid
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 70
container_title
container_volume LNCS-14575
creator Baillot, Patrick
Dal Lago, Ugo
Kop, Cynthia
Vale, Deivid
description The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.
doi_str_mv 10.1007/978-3-031-57231-9_4
format Conference Proceeding
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04743265v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04743265v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-b310t-6fd5159df0612529a5dc1322c082b7d8c14b8c798aa2f96dec2fdbb7d8927b713</originalsourceid><addsrcrecordid>eNotTMtKw0AUHRBBrf0CN9m6GL33TiaT2Qi12AdEutF1mFdIJCYlGQX_pt_SLzNBN-fNYewO4QEB1KNWORccBHKpaEJdphfsRkzB7AGu2HIcPwBAEKDWcM2eDl3ybMbGnU-bMLFtw6S-OhebvjPtmJjOJ7EOyb6LYTgOIZq5OZ9eQ6x7f8suq2kVlv-8YO-bl7f1jheH7X69KrgVCJFnlZcota8gQ5KkjfQOBZGDnKzyucPU5k7p3BiqdOaDo8rbudGkrEKxYPd_v7Vpy-PQfJrhp-xNU-5WRTlnkKpUUCa_UfwC_ZhOSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Basic Feasible Functionals and the Interpretation Method</title><source>Springer Books</source><source>SpringerLink Fully Open Access Books</source><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</creator><creatorcontrib>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</creatorcontrib><description>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</description><identifier>ISBN: 3031572300</identifier><identifier>ISBN: 9783031572302</identifier><identifier>DOI: 10.1007/978-3-031-57231-9_4</identifier><language>eng</language><publisher>Springer Nature Switzerland</publisher><subject>Computer Science</subject><ispartof>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding, 2024, Vol.LNCS-14575, p.70-91</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6337-2544 ; 0000-0001-9200-070X ; 0000-0003-1350-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,784,789,790,885,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04743265$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baillot, Patrick</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Kop, Cynthia</creatorcontrib><creatorcontrib>Vale, Deivid</creatorcontrib><title>On Basic Feasible Functionals and the Interpretation Method</title><title>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding</title><description>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</description><subject>Computer Science</subject><isbn>3031572300</isbn><isbn>9783031572302</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotTMtKw0AUHRBBrf0CN9m6GL33TiaT2Qi12AdEutF1mFdIJCYlGQX_pt_SLzNBN-fNYewO4QEB1KNWORccBHKpaEJdphfsRkzB7AGu2HIcPwBAEKDWcM2eDl3ybMbGnU-bMLFtw6S-OhebvjPtmJjOJ7EOyb6LYTgOIZq5OZ9eQ6x7f8suq2kVlv-8YO-bl7f1jheH7X69KrgVCJFnlZcota8gQ5KkjfQOBZGDnKzyucPU5k7p3BiqdOaDo8rbudGkrEKxYPd_v7Vpy-PQfJrhp-xNU-5WRTlnkKpUUCa_UfwC_ZhOSw</recordid><startdate>20240406</startdate><enddate>20240406</enddate><creator>Baillot, Patrick</creator><creator>Dal Lago, Ugo</creator><creator>Kop, Cynthia</creator><creator>Vale, Deivid</creator><general>Springer Nature Switzerland</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6337-2544</orcidid><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><orcidid>https://orcid.org/0000-0003-1350-3478</orcidid></search><sort><creationdate>20240406</creationdate><title>On Basic Feasible Functionals and the Interpretation Method</title><author>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b310t-6fd5159df0612529a5dc1322c082b7d8c14b8c798aa2f96dec2fdbb7d8927b713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baillot, Patrick</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Kop, Cynthia</creatorcontrib><creatorcontrib>Vale, Deivid</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baillot, Patrick</au><au>Dal Lago, Ugo</au><au>Kop, Cynthia</au><au>Vale, Deivid</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Basic Feasible Functionals and the Interpretation Method</atitle><btitle>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding</btitle><date>2024-04-06</date><risdate>2024</risdate><volume>LNCS-14575</volume><spage>70</spage><epage>91</epage><pages>70-91</pages><isbn>3031572300</isbn><isbn>9783031572302</isbn><abstract>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</abstract><pub>Springer Nature Switzerland</pub><doi>10.1007/978-3-031-57231-9_4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6337-2544</orcidid><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><orcidid>https://orcid.org/0000-0003-1350-3478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 3031572300
ispartof Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding, 2024, Vol.LNCS-14575, p.70-91
issn
language eng
recordid cdi_hal_primary_oai_HAL_hal_04743265v1
source Springer Books; SpringerLink Fully Open Access Books; OAPEN; DOAB: Directory of Open Access Books
subjects Computer Science
title On Basic Feasible Functionals and the Interpretation Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Basic%C2%A0Feasible%C2%A0Functionals%20and%20the%20Interpretation%C2%A0Method&rft.btitle=Foundations%20of%20Software%20Science%20and%20Computation%20Structures%2027th%20International%20Conference,%20FoSSaCS%202024,%20Held%20as%20Part%20of%20the%20European%20Joint%20Conferences%20on%20Theory%20and%20Practice%20of%20Software,%20ETAPS%202024,%20Luxembourg%20City,%20Luxembourg,%20April%206-11,%202024,%20Proceeding&rft.au=Baillot,%20Patrick&rft.date=2024-04-06&rft.volume=LNCS-14575&rft.spage=70&rft.epage=91&rft.pages=70-91&rft.isbn=3031572300&rft.isbn_list=9783031572302&rft_id=info:doi/10.1007/978-3-031-57231-9_4&rft_dat=%3Chal%3Eoai_HAL_hal_04743265v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true