On Basic Feasible Functionals and the Interpretation Method
The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On t...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | |
container_start_page | 70 |
container_title | |
container_volume | LNCS-14575 |
creator | Baillot, Patrick Dal Lago, Ugo Kop, Cynthia Vale, Deivid |
description | The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF. |
doi_str_mv | 10.1007/978-3-031-57231-9_4 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04743265v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04743265v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-b310t-6fd5159df0612529a5dc1322c082b7d8c14b8c798aa2f96dec2fdbb7d8927b713</originalsourceid><addsrcrecordid>eNotTMtKw0AUHRBBrf0CN9m6GL33TiaT2Qi12AdEutF1mFdIJCYlGQX_pt_SLzNBN-fNYewO4QEB1KNWORccBHKpaEJdphfsRkzB7AGu2HIcPwBAEKDWcM2eDl3ybMbGnU-bMLFtw6S-OhebvjPtmJjOJ7EOyb6LYTgOIZq5OZ9eQ6x7f8suq2kVlv-8YO-bl7f1jheH7X69KrgVCJFnlZcota8gQ5KkjfQOBZGDnKzyucPU5k7p3BiqdOaDo8rbudGkrEKxYPd_v7Vpy-PQfJrhp-xNU-5WRTlnkKpUUCa_UfwC_ZhOSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Basic Feasible Functionals and the Interpretation Method</title><source>Springer Books</source><source>SpringerLink Fully Open Access Books</source><source>OAPEN</source><source>DOAB: Directory of Open Access Books</source><creator>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</creator><creatorcontrib>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</creatorcontrib><description>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</description><identifier>ISBN: 3031572300</identifier><identifier>ISBN: 9783031572302</identifier><identifier>DOI: 10.1007/978-3-031-57231-9_4</identifier><language>eng</language><publisher>Springer Nature Switzerland</publisher><subject>Computer Science</subject><ispartof>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding, 2024, Vol.LNCS-14575, p.70-91</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6337-2544 ; 0000-0001-9200-070X ; 0000-0003-1350-3478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,784,789,790,885,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04743265$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baillot, Patrick</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Kop, Cynthia</creatorcontrib><creatorcontrib>Vale, Deivid</creatorcontrib><title>On Basic Feasible Functionals and the Interpretation Method</title><title>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding</title><description>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</description><subject>Computer Science</subject><isbn>3031572300</isbn><isbn>9783031572302</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotTMtKw0AUHRBBrf0CN9m6GL33TiaT2Qi12AdEutF1mFdIJCYlGQX_pt_SLzNBN-fNYewO4QEB1KNWORccBHKpaEJdphfsRkzB7AGu2HIcPwBAEKDWcM2eDl3ybMbGnU-bMLFtw6S-OhebvjPtmJjOJ7EOyb6LYTgOIZq5OZ9eQ6x7f8suq2kVlv-8YO-bl7f1jheH7X69KrgVCJFnlZcota8gQ5KkjfQOBZGDnKzyucPU5k7p3BiqdOaDo8rbudGkrEKxYPd_v7Vpy-PQfJrhp-xNU-5WRTlnkKpUUCa_UfwC_ZhOSw</recordid><startdate>20240406</startdate><enddate>20240406</enddate><creator>Baillot, Patrick</creator><creator>Dal Lago, Ugo</creator><creator>Kop, Cynthia</creator><creator>Vale, Deivid</creator><general>Springer Nature Switzerland</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6337-2544</orcidid><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><orcidid>https://orcid.org/0000-0003-1350-3478</orcidid></search><sort><creationdate>20240406</creationdate><title>On Basic Feasible Functionals and the Interpretation Method</title><author>Baillot, Patrick ; Dal Lago, Ugo ; Kop, Cynthia ; Vale, Deivid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b310t-6fd5159df0612529a5dc1322c082b7d8c14b8c798aa2f96dec2fdbb7d8927b713</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baillot, Patrick</creatorcontrib><creatorcontrib>Dal Lago, Ugo</creatorcontrib><creatorcontrib>Kop, Cynthia</creatorcontrib><creatorcontrib>Vale, Deivid</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baillot, Patrick</au><au>Dal Lago, Ugo</au><au>Kop, Cynthia</au><au>Vale, Deivid</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Basic Feasible Functionals and the Interpretation Method</atitle><btitle>Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding</btitle><date>2024-04-06</date><risdate>2024</risdate><volume>LNCS-14575</volume><spage>70</spage><epage>91</epage><pages>70-91</pages><isbn>3031572300</isbn><isbn>9783031572302</isbn><abstract>The class of basic feasible functionals (BFF) is the analog of FP (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. BFF can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing BFF by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost–size interpretations for higher-orderterm rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order termsadmitting a certain kind of cost–size interpretation is exactly BFF.</abstract><pub>Springer Nature Switzerland</pub><doi>10.1007/978-3-031-57231-9_4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6337-2544</orcidid><orcidid>https://orcid.org/0000-0001-9200-070X</orcidid><orcidid>https://orcid.org/0000-0003-1350-3478</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 3031572300 |
ispartof | Foundations of Software Science and Computation Structures 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceeding, 2024, Vol.LNCS-14575, p.70-91 |
issn | |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04743265v1 |
source | Springer Books; SpringerLink Fully Open Access Books; OAPEN; DOAB: Directory of Open Access Books |
subjects | Computer Science |
title | On Basic Feasible Functionals and the Interpretation Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Basic%C2%A0Feasible%C2%A0Functionals%20and%20the%20Interpretation%C2%A0Method&rft.btitle=Foundations%20of%20Software%20Science%20and%20Computation%20Structures%2027th%20International%20Conference,%20FoSSaCS%202024,%20Held%20as%20Part%20of%20the%20European%20Joint%20Conferences%20on%20Theory%20and%20Practice%20of%20Software,%20ETAPS%202024,%20Luxembourg%20City,%20Luxembourg,%20April%206-11,%202024,%20Proceeding&rft.au=Baillot,%20Patrick&rft.date=2024-04-06&rft.volume=LNCS-14575&rft.spage=70&rft.epage=91&rft.pages=70-91&rft.isbn=3031572300&rft.isbn_list=9783031572302&rft_id=info:doi/10.1007/978-3-031-57231-9_4&rft_dat=%3Chal%3Eoai_HAL_hal_04743265v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |