Computational detection of antigen-specific B cell receptors following immunization

B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-08, Vol.121 (35), p.e2401058121
Hauptverfasser: Abbate, Maria Francesca, Dupic, Thomas, Vigne, Emmanuelle, Shahsavarian, Melody A, Walczak, Aleksandra M, Mora, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 35
container_start_page e2401058121
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Abbate, Maria Francesca
Dupic, Thomas
Vigne, Emmanuelle
Shahsavarian, Melody A
Walczak, Aleksandra M
Mora, Thierry
description B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.
doi_str_mv 10.1073/pnas.2401058121
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04739240v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095174083</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1591-5f5fff7493b499beee9a0efe599d527a3bca626b668ff1e102d76eb1adbb47213</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgC0EoqUws6FILDCknB-J47FUvKRKDMAcOcm5GCVxiBMQ_HpcKAzccqfTp3t8hBxTmFOQ_KJrtZ8zARSSjDK6Q6YUFI1ToWCXTAGYjDPBxIQceP8CACrJYJ9MuKIpDzElD0vXdOOgB-taXUcVDlhu6siZSLeDXWMb-w5La2wZXUYl1nXUY4nd4HofGVfX7t2268g2zdjaz-85h2TP6Nrj0TbPyNP11ePyNl7d39wtF6v4mSbhyMQkxhgpFC-EUgUiKg1oMFGqSpjUvCh1ytIiTTNjKFJglUyxoLoqCiEZ5TNy_jP3Wdd519tG9x-50za_XazyTQ-E5CrYeduwZz9s17vXEf2QN9ZvvtEtutHnPKihUkDGA3r6D31xYx_sBIpCykRgZaBOttRYNFj97f9Vy78Af6N7Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106243097</pqid></control><display><type>article</type><title>Computational detection of antigen-specific B cell receptors following immunization</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</creator><creatorcontrib>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</creatorcontrib><description>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2401058121</identifier><identifier>PMID: 39163333</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antigens ; B-Lymphocytes - immunology ; Complementarity ; Complementarity Determining Regions - genetics ; Complementarity Determining Regions - immunology ; Complementarity-determining region 3 ; Computational Biology - methods ; Computer applications ; COVID-19 - immunology ; COVID-19 - prevention &amp; control ; COVID-19 - virology ; Drug development ; High-Throughput Nucleotide Sequencing ; Humans ; Immunization ; Immunization - methods ; Influenza Vaccines - immunology ; Influenza, Human - immunology ; Influenza, Human - prevention &amp; control ; Life Sciences ; Next-generation sequencing ; Precision medicine ; Public health ; Receptors ; Receptors, Antigen, B-Cell - genetics ; Receptors, Antigen, B-Cell - immunology ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Vaccination ; Vaccine development ; Vaccines</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401058121</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5456-9361 ; 0000-0002-2686-5702 ; 0009-0006-1718-8769 ; 0009-0007-7805-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39163333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04739240$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbate, Maria Francesca</creatorcontrib><creatorcontrib>Dupic, Thomas</creatorcontrib><creatorcontrib>Vigne, Emmanuelle</creatorcontrib><creatorcontrib>Shahsavarian, Melody A</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><title>Computational detection of antigen-specific B cell receptors following immunization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</description><subject>Antigens</subject><subject>B-Lymphocytes - immunology</subject><subject>Complementarity</subject><subject>Complementarity Determining Regions - genetics</subject><subject>Complementarity Determining Regions - immunology</subject><subject>Complementarity-determining region 3</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>COVID-19 - immunology</subject><subject>COVID-19 - prevention &amp; control</subject><subject>COVID-19 - virology</subject><subject>Drug development</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Immunization</subject><subject>Immunization - methods</subject><subject>Influenza Vaccines - immunology</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - prevention &amp; control</subject><subject>Life Sciences</subject><subject>Next-generation sequencing</subject><subject>Precision medicine</subject><subject>Public health</subject><subject>Receptors</subject><subject>Receptors, Antigen, B-Cell - genetics</subject><subject>Receptors, Antigen, B-Cell - immunology</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Vaccination</subject><subject>Vaccine development</subject><subject>Vaccines</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAQgC0EoqUws6FILDCknB-J47FUvKRKDMAcOcm5GCVxiBMQ_HpcKAzccqfTp3t8hBxTmFOQ_KJrtZ8zARSSjDK6Q6YUFI1ToWCXTAGYjDPBxIQceP8CACrJYJ9MuKIpDzElD0vXdOOgB-taXUcVDlhu6siZSLeDXWMb-w5La2wZXUYl1nXUY4nd4HofGVfX7t2268g2zdjaz-85h2TP6Nrj0TbPyNP11ePyNl7d39wtF6v4mSbhyMQkxhgpFC-EUgUiKg1oMFGqSpjUvCh1ytIiTTNjKFJglUyxoLoqCiEZ5TNy_jP3Wdd519tG9x-50za_XazyTQ-E5CrYeduwZz9s17vXEf2QN9ZvvtEtutHnPKihUkDGA3r6D31xYx_sBIpCykRgZaBOttRYNFj97f9Vy78Af6N7Nw</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Abbate, Maria Francesca</creator><creator>Dupic, Thomas</creator><creator>Vigne, Emmanuelle</creator><creator>Shahsavarian, Melody A</creator><creator>Walczak, Aleksandra M</creator><creator>Mora, Thierry</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0009-0006-1718-8769</orcidid><orcidid>https://orcid.org/0009-0007-7805-7081</orcidid></search><sort><creationdate>20240827</creationdate><title>Computational detection of antigen-specific B cell receptors following immunization</title><author>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1591-5f5fff7493b499beee9a0efe599d527a3bca626b668ff1e102d76eb1adbb47213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antigens</topic><topic>B-Lymphocytes - immunology</topic><topic>Complementarity</topic><topic>Complementarity Determining Regions - genetics</topic><topic>Complementarity Determining Regions - immunology</topic><topic>Complementarity-determining region 3</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>COVID-19 - immunology</topic><topic>COVID-19 - prevention &amp; control</topic><topic>COVID-19 - virology</topic><topic>Drug development</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Immunization</topic><topic>Immunization - methods</topic><topic>Influenza Vaccines - immunology</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - prevention &amp; control</topic><topic>Life Sciences</topic><topic>Next-generation sequencing</topic><topic>Precision medicine</topic><topic>Public health</topic><topic>Receptors</topic><topic>Receptors, Antigen, B-Cell - genetics</topic><topic>Receptors, Antigen, B-Cell - immunology</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Vaccination</topic><topic>Vaccine development</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbate, Maria Francesca</creatorcontrib><creatorcontrib>Dupic, Thomas</creatorcontrib><creatorcontrib>Vigne, Emmanuelle</creatorcontrib><creatorcontrib>Shahsavarian, Melody A</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbate, Maria Francesca</au><au>Dupic, Thomas</au><au>Vigne, Emmanuelle</au><au>Shahsavarian, Melody A</au><au>Walczak, Aleksandra M</au><au>Mora, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational detection of antigen-specific B cell receptors following immunization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>121</volume><issue>35</issue><spage>e2401058121</spage><pages>e2401058121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39163333</pmid><doi>10.1073/pnas.2401058121</doi><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0009-0006-1718-8769</orcidid><orcidid>https://orcid.org/0009-0007-7805-7081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401058121
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_hal_primary_oai_HAL_hal_04739240v1
source MEDLINE; Alma/SFX Local Collection
subjects Antigens
B-Lymphocytes - immunology
Complementarity
Complementarity Determining Regions - genetics
Complementarity Determining Regions - immunology
Complementarity-determining region 3
Computational Biology - methods
Computer applications
COVID-19 - immunology
COVID-19 - prevention & control
COVID-19 - virology
Drug development
High-Throughput Nucleotide Sequencing
Humans
Immunization
Immunization - methods
Influenza Vaccines - immunology
Influenza, Human - immunology
Influenza, Human - prevention & control
Life Sciences
Next-generation sequencing
Precision medicine
Public health
Receptors
Receptors, Antigen, B-Cell - genetics
Receptors, Antigen, B-Cell - immunology
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
Vaccination
Vaccine development
Vaccines
title Computational detection of antigen-specific B cell receptors following immunization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20detection%20of%20antigen-specific%20B%20cell%20receptors%20following%20immunization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Abbate,%20Maria%20Francesca&rft.date=2024-08-27&rft.volume=121&rft.issue=35&rft.spage=e2401058121&rft.pages=e2401058121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2401058121&rft_dat=%3Cproquest_hal_p%3E3095174083%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106243097&rft_id=info:pmid/39163333&rfr_iscdi=true