Computational detection of antigen-specific B cell receptors following immunization
B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurate...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2024-08, Vol.121 (35), p.e2401058121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 35 |
container_start_page | e2401058121 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 121 |
creator | Abbate, Maria Francesca Dupic, Thomas Vigne, Emmanuelle Shahsavarian, Melody A Walczak, Aleksandra M Mora, Thierry |
description | B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics. |
doi_str_mv | 10.1073/pnas.2401058121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04739240v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095174083</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1591-5f5fff7493b499beee9a0efe599d527a3bca626b668ff1e102d76eb1adbb47213</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgC0EoqUws6FILDCknB-J47FUvKRKDMAcOcm5GCVxiBMQ_HpcKAzccqfTp3t8hBxTmFOQ_KJrtZ8zARSSjDK6Q6YUFI1ToWCXTAGYjDPBxIQceP8CACrJYJ9MuKIpDzElD0vXdOOgB-taXUcVDlhu6siZSLeDXWMb-w5La2wZXUYl1nXUY4nd4HofGVfX7t2268g2zdjaz-85h2TP6Nrj0TbPyNP11ePyNl7d39wtF6v4mSbhyMQkxhgpFC-EUgUiKg1oMFGqSpjUvCh1ytIiTTNjKFJglUyxoLoqCiEZ5TNy_jP3Wdd519tG9x-50za_XazyTQ-E5CrYeduwZz9s17vXEf2QN9ZvvtEtutHnPKihUkDGA3r6D31xYx_sBIpCykRgZaBOttRYNFj97f9Vy78Af6N7Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106243097</pqid></control><display><type>article</type><title>Computational detection of antigen-specific B cell receptors following immunization</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</creator><creatorcontrib>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</creatorcontrib><description>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2401058121</identifier><identifier>PMID: 39163333</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antigens ; B-Lymphocytes - immunology ; Complementarity ; Complementarity Determining Regions - genetics ; Complementarity Determining Regions - immunology ; Complementarity-determining region 3 ; Computational Biology - methods ; Computer applications ; COVID-19 - immunology ; COVID-19 - prevention & control ; COVID-19 - virology ; Drug development ; High-Throughput Nucleotide Sequencing ; Humans ; Immunization ; Immunization - methods ; Influenza Vaccines - immunology ; Influenza, Human - immunology ; Influenza, Human - prevention & control ; Life Sciences ; Next-generation sequencing ; Precision medicine ; Public health ; Receptors ; Receptors, Antigen, B-Cell - genetics ; Receptors, Antigen, B-Cell - immunology ; SARS-CoV-2 - immunology ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Vaccination ; Vaccine development ; Vaccines</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401058121</ispartof><rights>Copyright National Academy of Sciences Aug 27, 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5456-9361 ; 0000-0002-2686-5702 ; 0009-0006-1718-8769 ; 0009-0007-7805-7081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39163333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04739240$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbate, Maria Francesca</creatorcontrib><creatorcontrib>Dupic, Thomas</creatorcontrib><creatorcontrib>Vigne, Emmanuelle</creatorcontrib><creatorcontrib>Shahsavarian, Melody A</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><title>Computational detection of antigen-specific B cell receptors following immunization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</description><subject>Antigens</subject><subject>B-Lymphocytes - immunology</subject><subject>Complementarity</subject><subject>Complementarity Determining Regions - genetics</subject><subject>Complementarity Determining Regions - immunology</subject><subject>Complementarity-determining region 3</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>COVID-19 - immunology</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 - virology</subject><subject>Drug development</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Immunization</subject><subject>Immunization - methods</subject><subject>Influenza Vaccines - immunology</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - prevention & control</subject><subject>Life Sciences</subject><subject>Next-generation sequencing</subject><subject>Precision medicine</subject><subject>Public health</subject><subject>Receptors</subject><subject>Receptors, Antigen, B-Cell - genetics</subject><subject>Receptors, Antigen, B-Cell - immunology</subject><subject>SARS-CoV-2 - immunology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Vaccination</subject><subject>Vaccine development</subject><subject>Vaccines</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkDtPwzAQgC0EoqUws6FILDCknB-J47FUvKRKDMAcOcm5GCVxiBMQ_HpcKAzccqfTp3t8hBxTmFOQ_KJrtZ8zARSSjDK6Q6YUFI1ToWCXTAGYjDPBxIQceP8CACrJYJ9MuKIpDzElD0vXdOOgB-taXUcVDlhu6siZSLeDXWMb-w5La2wZXUYl1nXUY4nd4HofGVfX7t2268g2zdjaz-85h2TP6Nrj0TbPyNP11ePyNl7d39wtF6v4mSbhyMQkxhgpFC-EUgUiKg1oMFGqSpjUvCh1ytIiTTNjKFJglUyxoLoqCiEZ5TNy_jP3Wdd519tG9x-50za_XazyTQ-E5CrYeduwZz9s17vXEf2QN9ZvvtEtutHnPKihUkDGA3r6D31xYx_sBIpCykRgZaBOttRYNFj97f9Vy78Af6N7Nw</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>Abbate, Maria Francesca</creator><creator>Dupic, Thomas</creator><creator>Vigne, Emmanuelle</creator><creator>Shahsavarian, Melody A</creator><creator>Walczak, Aleksandra M</creator><creator>Mora, Thierry</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0009-0006-1718-8769</orcidid><orcidid>https://orcid.org/0009-0007-7805-7081</orcidid></search><sort><creationdate>20240827</creationdate><title>Computational detection of antigen-specific B cell receptors following immunization</title><author>Abbate, Maria Francesca ; Dupic, Thomas ; Vigne, Emmanuelle ; Shahsavarian, Melody A ; Walczak, Aleksandra M ; Mora, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1591-5f5fff7493b499beee9a0efe599d527a3bca626b668ff1e102d76eb1adbb47213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antigens</topic><topic>B-Lymphocytes - immunology</topic><topic>Complementarity</topic><topic>Complementarity Determining Regions - genetics</topic><topic>Complementarity Determining Regions - immunology</topic><topic>Complementarity-determining region 3</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>COVID-19 - immunology</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 - virology</topic><topic>Drug development</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Immunization</topic><topic>Immunization - methods</topic><topic>Influenza Vaccines - immunology</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - prevention & control</topic><topic>Life Sciences</topic><topic>Next-generation sequencing</topic><topic>Precision medicine</topic><topic>Public health</topic><topic>Receptors</topic><topic>Receptors, Antigen, B-Cell - genetics</topic><topic>Receptors, Antigen, B-Cell - immunology</topic><topic>SARS-CoV-2 - immunology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Vaccination</topic><topic>Vaccine development</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbate, Maria Francesca</creatorcontrib><creatorcontrib>Dupic, Thomas</creatorcontrib><creatorcontrib>Vigne, Emmanuelle</creatorcontrib><creatorcontrib>Shahsavarian, Melody A</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbate, Maria Francesca</au><au>Dupic, Thomas</au><au>Vigne, Emmanuelle</au><au>Shahsavarian, Melody A</au><au>Walczak, Aleksandra M</au><au>Mora, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational detection of antigen-specific B cell receptors following immunization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-08-27</date><risdate>2024</risdate><volume>121</volume><issue>35</issue><spage>e2401058121</spage><pages>e2401058121-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>39163333</pmid><doi>10.1073/pnas.2401058121</doi><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0009-0006-1718-8769</orcidid><orcidid>https://orcid.org/0009-0007-7805-7081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2024-08, Vol.121 (35), p.e2401058121 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04739240v1 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Antigens B-Lymphocytes - immunology Complementarity Complementarity Determining Regions - genetics Complementarity Determining Regions - immunology Complementarity-determining region 3 Computational Biology - methods Computer applications COVID-19 - immunology COVID-19 - prevention & control COVID-19 - virology Drug development High-Throughput Nucleotide Sequencing Humans Immunization Immunization - methods Influenza Vaccines - immunology Influenza, Human - immunology Influenza, Human - prevention & control Life Sciences Next-generation sequencing Precision medicine Public health Receptors Receptors, Antigen, B-Cell - genetics Receptors, Antigen, B-Cell - immunology SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Statistical analysis Vaccination Vaccine development Vaccines |
title | Computational detection of antigen-specific B cell receptors following immunization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20detection%20of%20antigen-specific%20B%20cell%20receptors%20following%20immunization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Abbate,%20Maria%20Francesca&rft.date=2024-08-27&rft.volume=121&rft.issue=35&rft.spage=e2401058121&rft.pages=e2401058121-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2401058121&rft_dat=%3Cproquest_hal_p%3E3095174083%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106243097&rft_id=info:pmid/39163333&rfr_iscdi=true |