How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews physics 2024-01, Vol.6 (1), p.45-58
Hauptverfasser: Bosoni, Emanuele, Beal, Louis, Bercx, Marnik, Blaha, Peter, Blügel, Stefan, Bröder, Jens, Callsen, Martin, Cottenier, Stefaan, Degomme, Augustin, Dikan, Vladimir, Eimre, Kristjan, Flage-Larsen, Espen, Fornari, Marco, Garcia, Alberto, Genovese, Luigi, Giantomassi, Matteo, Huber, Sebastiaan P., Janssen, Henning, Kastlunger, Georg, Krack, Matthias, Kresse, Georg, Kühne, Thomas D., Lejaeghere, Kurt, Madsen, Georg K. H., Marsman, Martijn, Marzari, Nicola, Michalicek, Gregor, Mirhosseini, Hossein, Müller, Tiziano M. A., Petretto, Guido, Pickard, Chris J., Poncé, Samuel, Rignanese, Gian-Marco, Rubel, Oleg, Ruh, Thomas, Sluydts, Michael, Vanpoucke, Danny E. P., Vijay, Sudarshan, Wolloch, Michael, Wortmann, Daniel, Yakutovich, Aliaksandr V., Yu, Jusong, Zadoks, Austin, Zhu, Bonan, Pizzi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 45
container_title Nature reviews physics
container_volume 6
creator Bosoni, Emanuele
Beal, Louis
Bercx, Marnik
Blaha, Peter
Blügel, Stefan
Bröder, Jens
Callsen, Martin
Cottenier, Stefaan
Degomme, Augustin
Dikan, Vladimir
Eimre, Kristjan
Flage-Larsen, Espen
Fornari, Marco
Garcia, Alberto
Genovese, Luigi
Giantomassi, Matteo
Huber, Sebastiaan P.
Janssen, Henning
Kastlunger, Georg
Krack, Matthias
Kresse, Georg
Kühne, Thomas D.
Lejaeghere, Kurt
Madsen, Georg K. H.
Marsman, Martijn
Marzari, Nicola
Michalicek, Gregor
Mirhosseini, Hossein
Müller, Tiziano M. A.
Petretto, Guido
Pickard, Chris J.
Poncé, Samuel
Rignanese, Gian-Marco
Rubel, Oleg
Ruh, Thomas
Sluydts, Michael
Vanpoucke, Danny E. P.
Vijay, Sudarshan
Wolloch, Michael
Wortmann, Daniel
Yakutovich, Aliaksandr V.
Yu, Jusong
Zadoks, Austin
Zhu, Bonan
Pizzi, Giovanni
description Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z  = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals. Verification efforts of density-functional theory (DFT) calculations are of crucial importance to evaluate the reliability of simulation results. In this Expert Recommendation, we suggest metrics for DFT verification, illustrating them with an all-electron reference dataset of 960 equations of state covering the whole periodic table (hydrogen to curium) and discuss the importance of improving pseudopotential codes. Key points Verification efforts are critical to assess the reliability of density-functional theory (DFT) simulations and provide results with properly quantified uncertainties. Developing standard computation protocols to perform verification studies and publishing curated and FAIR reference datasets can greatly aid their use to improve codes and computational approaches. The use of fully automated workflows with common interfaces between codes can guarantee uniformity, transferability and reproducibility of results. A careful description of the numerical and methodological details needed to compare with the reference datasets is essential; we discuss and illustrate this point with a dataset of 960 all-electron equations of state. Reference datasets should always include an explanation of the target property for which they were generated, and a discussion of their limits of applicability. Fu
doi_str_mv 10.1038/s42254-023-00655-3
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04738736v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04738736v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1c76b27d52f348d867899b3641a22fb241c09ecd9c43874467d9a77c65f604bc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEhX0DzB5ZTA4_kzGqgKKVIkFZstxbOqSxsFOW-Xf4xKEmJje09U9dzgA3BT4rsC0vE-MEM4QJhRhLDhH9AzMCCcE8ZLg8z__JZintMUYk4IxjukMfK7CEQ4BHmz0boTDxsI-WuOTDx0MDja2S34Ykdt3ZsiZblHuhDhCv-tbu7PdoE95ggevYbR9DM3e-Lq1UHcN3Hc-LyfdwmOIH64Nx3QNLpxuk53_3Cvw9vjwulyh9cvT83KxRoaKakCFkaImsuHEUVY2pZBlVdVUsEIT4mrCCoMra5rKMFpKxoRsKi2lEdwJzGpDr8DttLvRreqj3-k4qqC9Wi3W6pRhJjNJxaHIXTJ1TQwpRet-gQKrk2M1OVbZsfp2rGiG6ASlXO7ebVTbsI_ZUPqP-gKY9ICt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How to verify the precision of density-functional-theory implementations via reproducible and universal workflows</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Bosoni, Emanuele ; Beal, Louis ; Bercx, Marnik ; Blaha, Peter ; Blügel, Stefan ; Bröder, Jens ; Callsen, Martin ; Cottenier, Stefaan ; Degomme, Augustin ; Dikan, Vladimir ; Eimre, Kristjan ; Flage-Larsen, Espen ; Fornari, Marco ; Garcia, Alberto ; Genovese, Luigi ; Giantomassi, Matteo ; Huber, Sebastiaan P. ; Janssen, Henning ; Kastlunger, Georg ; Krack, Matthias ; Kresse, Georg ; Kühne, Thomas D. ; Lejaeghere, Kurt ; Madsen, Georg K. H. ; Marsman, Martijn ; Marzari, Nicola ; Michalicek, Gregor ; Mirhosseini, Hossein ; Müller, Tiziano M. A. ; Petretto, Guido ; Pickard, Chris J. ; Poncé, Samuel ; Rignanese, Gian-Marco ; Rubel, Oleg ; Ruh, Thomas ; Sluydts, Michael ; Vanpoucke, Danny E. P. ; Vijay, Sudarshan ; Wolloch, Michael ; Wortmann, Daniel ; Yakutovich, Aliaksandr V. ; Yu, Jusong ; Zadoks, Austin ; Zhu, Bonan ; Pizzi, Giovanni</creator><creatorcontrib>Bosoni, Emanuele ; Beal, Louis ; Bercx, Marnik ; Blaha, Peter ; Blügel, Stefan ; Bröder, Jens ; Callsen, Martin ; Cottenier, Stefaan ; Degomme, Augustin ; Dikan, Vladimir ; Eimre, Kristjan ; Flage-Larsen, Espen ; Fornari, Marco ; Garcia, Alberto ; Genovese, Luigi ; Giantomassi, Matteo ; Huber, Sebastiaan P. ; Janssen, Henning ; Kastlunger, Georg ; Krack, Matthias ; Kresse, Georg ; Kühne, Thomas D. ; Lejaeghere, Kurt ; Madsen, Georg K. H. ; Marsman, Martijn ; Marzari, Nicola ; Michalicek, Gregor ; Mirhosseini, Hossein ; Müller, Tiziano M. A. ; Petretto, Guido ; Pickard, Chris J. ; Poncé, Samuel ; Rignanese, Gian-Marco ; Rubel, Oleg ; Ruh, Thomas ; Sluydts, Michael ; Vanpoucke, Danny E. P. ; Vijay, Sudarshan ; Wolloch, Michael ; Wortmann, Daniel ; Yakutovich, Aliaksandr V. ; Yu, Jusong ; Zadoks, Austin ; Zhu, Bonan ; Pizzi, Giovanni</creatorcontrib><description>Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z  = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals. Verification efforts of density-functional theory (DFT) calculations are of crucial importance to evaluate the reliability of simulation results. In this Expert Recommendation, we suggest metrics for DFT verification, illustrating them with an all-electron reference dataset of 960 equations of state covering the whole periodic table (hydrogen to curium) and discuss the importance of improving pseudopotential codes. Key points Verification efforts are critical to assess the reliability of density-functional theory (DFT) simulations and provide results with properly quantified uncertainties. Developing standard computation protocols to perform verification studies and publishing curated and FAIR reference datasets can greatly aid their use to improve codes and computational approaches. The use of fully automated workflows with common interfaces between codes can guarantee uniformity, transferability and reproducibility of results. A careful description of the numerical and methodological details needed to compare with the reference datasets is essential; we discuss and illustrate this point with a dataset of 960 all-electron equations of state. Reference datasets should always include an explanation of the target property for which they were generated, and a discussion of their limits of applicability. Further extensions of DFT verification efforts are needed to cover more functionals, more computational approaches and the treatment of magnetic and relativistic (spin–orbit) effects. They should also aim at concurrently delivering optimized protocols that not only target ultimate precision, but also optimize the computational cost for a target accuracy.</description><identifier>ISSN: 2522-5820</identifier><identifier>EISSN: 2522-5820</identifier><identifier>DOI: 10.1038/s42254-023-00655-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/766/119 ; Condensed Matter ; Engineering Sciences ; Expert Recommendation ; Materials ; Physics ; Physics and Astronomy</subject><ispartof>Nature reviews physics, 2024-01, Vol.6 (1), p.45-58</ispartof><rights>Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1c76b27d52f348d867899b3641a22fb241c09ecd9c43874467d9a77c65f604bc3</citedby><cites>FETCH-LOGICAL-c369t-1c76b27d52f348d867899b3641a22fb241c09ecd9c43874467d9a77c65f604bc3</cites><orcidid>0000-0001-7577-0198 ; 0000-0002-9764-0199 ; 0000-0001-6527-8511 ; 0000-0001-7939-226X ; 0000-0001-5919-7336 ; 0000-0001-5138-9579 ; 0000-0001-5849-5788 ; 0000-0002-3419-5526 ; 0000-0001-9987-4733 ; 0000-0003-2541-8043 ; 0000-0003-3558-9487 ; 0000-0002-1422-1205 ; 0000-0003-4585-5478 ; 0000-0002-2248-1904 ; 0000-0001-5601-6130 ; 0000-0002-3444-3286 ; 0000-0003-4719-188X ; 0000-0001-5845-8880 ; 0000-0002-9684-5432 ; 0000-0001-5471-2407 ; 0000-0002-4462-8209 ; 0000-0002-3767-8734 ; 0000-0002-2082-7027 ; 0000-0002-3583-4377 ; 0000-0002-7007-9813 ; 0000-0001-9102-4259 ; 0000-0002-1387-5717 ; 0000-0001-9246-6067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42254-023-00655-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42254-023-00655-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04738736$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosoni, Emanuele</creatorcontrib><creatorcontrib>Beal, Louis</creatorcontrib><creatorcontrib>Bercx, Marnik</creatorcontrib><creatorcontrib>Blaha, Peter</creatorcontrib><creatorcontrib>Blügel, Stefan</creatorcontrib><creatorcontrib>Bröder, Jens</creatorcontrib><creatorcontrib>Callsen, Martin</creatorcontrib><creatorcontrib>Cottenier, Stefaan</creatorcontrib><creatorcontrib>Degomme, Augustin</creatorcontrib><creatorcontrib>Dikan, Vladimir</creatorcontrib><creatorcontrib>Eimre, Kristjan</creatorcontrib><creatorcontrib>Flage-Larsen, Espen</creatorcontrib><creatorcontrib>Fornari, Marco</creatorcontrib><creatorcontrib>Garcia, Alberto</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Giantomassi, Matteo</creatorcontrib><creatorcontrib>Huber, Sebastiaan P.</creatorcontrib><creatorcontrib>Janssen, Henning</creatorcontrib><creatorcontrib>Kastlunger, Georg</creatorcontrib><creatorcontrib>Krack, Matthias</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><creatorcontrib>Kühne, Thomas D.</creatorcontrib><creatorcontrib>Lejaeghere, Kurt</creatorcontrib><creatorcontrib>Madsen, Georg K. H.</creatorcontrib><creatorcontrib>Marsman, Martijn</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><creatorcontrib>Michalicek, Gregor</creatorcontrib><creatorcontrib>Mirhosseini, Hossein</creatorcontrib><creatorcontrib>Müller, Tiziano M. A.</creatorcontrib><creatorcontrib>Petretto, Guido</creatorcontrib><creatorcontrib>Pickard, Chris J.</creatorcontrib><creatorcontrib>Poncé, Samuel</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Rubel, Oleg</creatorcontrib><creatorcontrib>Ruh, Thomas</creatorcontrib><creatorcontrib>Sluydts, Michael</creatorcontrib><creatorcontrib>Vanpoucke, Danny E. P.</creatorcontrib><creatorcontrib>Vijay, Sudarshan</creatorcontrib><creatorcontrib>Wolloch, Michael</creatorcontrib><creatorcontrib>Wortmann, Daniel</creatorcontrib><creatorcontrib>Yakutovich, Aliaksandr V.</creatorcontrib><creatorcontrib>Yu, Jusong</creatorcontrib><creatorcontrib>Zadoks, Austin</creatorcontrib><creatorcontrib>Zhu, Bonan</creatorcontrib><creatorcontrib>Pizzi, Giovanni</creatorcontrib><title>How to verify the precision of density-functional-theory implementations via reproducible and universal workflows</title><title>Nature reviews physics</title><addtitle>Nat Rev Phys</addtitle><description>Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z  = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals. Verification efforts of density-functional theory (DFT) calculations are of crucial importance to evaluate the reliability of simulation results. In this Expert Recommendation, we suggest metrics for DFT verification, illustrating them with an all-electron reference dataset of 960 equations of state covering the whole periodic table (hydrogen to curium) and discuss the importance of improving pseudopotential codes. Key points Verification efforts are critical to assess the reliability of density-functional theory (DFT) simulations and provide results with properly quantified uncertainties. Developing standard computation protocols to perform verification studies and publishing curated and FAIR reference datasets can greatly aid their use to improve codes and computational approaches. The use of fully automated workflows with common interfaces between codes can guarantee uniformity, transferability and reproducibility of results. A careful description of the numerical and methodological details needed to compare with the reference datasets is essential; we discuss and illustrate this point with a dataset of 960 all-electron equations of state. Reference datasets should always include an explanation of the target property for which they were generated, and a discussion of their limits of applicability. Further extensions of DFT verification efforts are needed to cover more functionals, more computational approaches and the treatment of magnetic and relativistic (spin–orbit) effects. They should also aim at concurrently delivering optimized protocols that not only target ultimate precision, but also optimize the computational cost for a target accuracy.</description><subject>639/301/1034/1038</subject><subject>639/766/119</subject><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Expert Recommendation</subject><subject>Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>2522-5820</issn><issn>2522-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEhX0DzB5ZTA4_kzGqgKKVIkFZstxbOqSxsFOW-Xf4xKEmJje09U9dzgA3BT4rsC0vE-MEM4QJhRhLDhH9AzMCCcE8ZLg8z__JZintMUYk4IxjukMfK7CEQ4BHmz0boTDxsI-WuOTDx0MDja2S34Ykdt3ZsiZblHuhDhCv-tbu7PdoE95ggevYbR9DM3e-Lq1UHcN3Hc-LyfdwmOIH64Nx3QNLpxuk53_3Cvw9vjwulyh9cvT83KxRoaKakCFkaImsuHEUVY2pZBlVdVUsEIT4mrCCoMra5rKMFpKxoRsKi2lEdwJzGpDr8DttLvRreqj3-k4qqC9Wi3W6pRhJjNJxaHIXTJ1TQwpRet-gQKrk2M1OVbZsfp2rGiG6ASlXO7ebVTbsI_ZUPqP-gKY9ICt</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bosoni, Emanuele</creator><creator>Beal, Louis</creator><creator>Bercx, Marnik</creator><creator>Blaha, Peter</creator><creator>Blügel, Stefan</creator><creator>Bröder, Jens</creator><creator>Callsen, Martin</creator><creator>Cottenier, Stefaan</creator><creator>Degomme, Augustin</creator><creator>Dikan, Vladimir</creator><creator>Eimre, Kristjan</creator><creator>Flage-Larsen, Espen</creator><creator>Fornari, Marco</creator><creator>Garcia, Alberto</creator><creator>Genovese, Luigi</creator><creator>Giantomassi, Matteo</creator><creator>Huber, Sebastiaan P.</creator><creator>Janssen, Henning</creator><creator>Kastlunger, Georg</creator><creator>Krack, Matthias</creator><creator>Kresse, Georg</creator><creator>Kühne, Thomas D.</creator><creator>Lejaeghere, Kurt</creator><creator>Madsen, Georg K. H.</creator><creator>Marsman, Martijn</creator><creator>Marzari, Nicola</creator><creator>Michalicek, Gregor</creator><creator>Mirhosseini, Hossein</creator><creator>Müller, Tiziano M. A.</creator><creator>Petretto, Guido</creator><creator>Pickard, Chris J.</creator><creator>Poncé, Samuel</creator><creator>Rignanese, Gian-Marco</creator><creator>Rubel, Oleg</creator><creator>Ruh, Thomas</creator><creator>Sluydts, Michael</creator><creator>Vanpoucke, Danny E. P.</creator><creator>Vijay, Sudarshan</creator><creator>Wolloch, Michael</creator><creator>Wortmann, Daniel</creator><creator>Yakutovich, Aliaksandr V.</creator><creator>Yu, Jusong</creator><creator>Zadoks, Austin</creator><creator>Zhu, Bonan</creator><creator>Pizzi, Giovanni</creator><general>Nature Publishing Group UK</general><general>Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7577-0198</orcidid><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-6527-8511</orcidid><orcidid>https://orcid.org/0000-0001-7939-226X</orcidid><orcidid>https://orcid.org/0000-0001-5919-7336</orcidid><orcidid>https://orcid.org/0000-0001-5138-9579</orcidid><orcidid>https://orcid.org/0000-0001-5849-5788</orcidid><orcidid>https://orcid.org/0000-0002-3419-5526</orcidid><orcidid>https://orcid.org/0000-0001-9987-4733</orcidid><orcidid>https://orcid.org/0000-0003-2541-8043</orcidid><orcidid>https://orcid.org/0000-0003-3558-9487</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-4585-5478</orcidid><orcidid>https://orcid.org/0000-0002-2248-1904</orcidid><orcidid>https://orcid.org/0000-0001-5601-6130</orcidid><orcidid>https://orcid.org/0000-0002-3444-3286</orcidid><orcidid>https://orcid.org/0000-0003-4719-188X</orcidid><orcidid>https://orcid.org/0000-0001-5845-8880</orcidid><orcidid>https://orcid.org/0000-0002-9684-5432</orcidid><orcidid>https://orcid.org/0000-0001-5471-2407</orcidid><orcidid>https://orcid.org/0000-0002-4462-8209</orcidid><orcidid>https://orcid.org/0000-0002-3767-8734</orcidid><orcidid>https://orcid.org/0000-0002-2082-7027</orcidid><orcidid>https://orcid.org/0000-0002-3583-4377</orcidid><orcidid>https://orcid.org/0000-0002-7007-9813</orcidid><orcidid>https://orcid.org/0000-0001-9102-4259</orcidid><orcidid>https://orcid.org/0000-0002-1387-5717</orcidid><orcidid>https://orcid.org/0000-0001-9246-6067</orcidid></search><sort><creationdate>20240101</creationdate><title>How to verify the precision of density-functional-theory implementations via reproducible and universal workflows</title><author>Bosoni, Emanuele ; Beal, Louis ; Bercx, Marnik ; Blaha, Peter ; Blügel, Stefan ; Bröder, Jens ; Callsen, Martin ; Cottenier, Stefaan ; Degomme, Augustin ; Dikan, Vladimir ; Eimre, Kristjan ; Flage-Larsen, Espen ; Fornari, Marco ; Garcia, Alberto ; Genovese, Luigi ; Giantomassi, Matteo ; Huber, Sebastiaan P. ; Janssen, Henning ; Kastlunger, Georg ; Krack, Matthias ; Kresse, Georg ; Kühne, Thomas D. ; Lejaeghere, Kurt ; Madsen, Georg K. H. ; Marsman, Martijn ; Marzari, Nicola ; Michalicek, Gregor ; Mirhosseini, Hossein ; Müller, Tiziano M. A. ; Petretto, Guido ; Pickard, Chris J. ; Poncé, Samuel ; Rignanese, Gian-Marco ; Rubel, Oleg ; Ruh, Thomas ; Sluydts, Michael ; Vanpoucke, Danny E. P. ; Vijay, Sudarshan ; Wolloch, Michael ; Wortmann, Daniel ; Yakutovich, Aliaksandr V. ; Yu, Jusong ; Zadoks, Austin ; Zhu, Bonan ; Pizzi, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1c76b27d52f348d867899b3641a22fb241c09ecd9c43874467d9a77c65f604bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/1034/1038</topic><topic>639/766/119</topic><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Expert Recommendation</topic><topic>Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosoni, Emanuele</creatorcontrib><creatorcontrib>Beal, Louis</creatorcontrib><creatorcontrib>Bercx, Marnik</creatorcontrib><creatorcontrib>Blaha, Peter</creatorcontrib><creatorcontrib>Blügel, Stefan</creatorcontrib><creatorcontrib>Bröder, Jens</creatorcontrib><creatorcontrib>Callsen, Martin</creatorcontrib><creatorcontrib>Cottenier, Stefaan</creatorcontrib><creatorcontrib>Degomme, Augustin</creatorcontrib><creatorcontrib>Dikan, Vladimir</creatorcontrib><creatorcontrib>Eimre, Kristjan</creatorcontrib><creatorcontrib>Flage-Larsen, Espen</creatorcontrib><creatorcontrib>Fornari, Marco</creatorcontrib><creatorcontrib>Garcia, Alberto</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Giantomassi, Matteo</creatorcontrib><creatorcontrib>Huber, Sebastiaan P.</creatorcontrib><creatorcontrib>Janssen, Henning</creatorcontrib><creatorcontrib>Kastlunger, Georg</creatorcontrib><creatorcontrib>Krack, Matthias</creatorcontrib><creatorcontrib>Kresse, Georg</creatorcontrib><creatorcontrib>Kühne, Thomas D.</creatorcontrib><creatorcontrib>Lejaeghere, Kurt</creatorcontrib><creatorcontrib>Madsen, Georg K. H.</creatorcontrib><creatorcontrib>Marsman, Martijn</creatorcontrib><creatorcontrib>Marzari, Nicola</creatorcontrib><creatorcontrib>Michalicek, Gregor</creatorcontrib><creatorcontrib>Mirhosseini, Hossein</creatorcontrib><creatorcontrib>Müller, Tiziano M. A.</creatorcontrib><creatorcontrib>Petretto, Guido</creatorcontrib><creatorcontrib>Pickard, Chris J.</creatorcontrib><creatorcontrib>Poncé, Samuel</creatorcontrib><creatorcontrib>Rignanese, Gian-Marco</creatorcontrib><creatorcontrib>Rubel, Oleg</creatorcontrib><creatorcontrib>Ruh, Thomas</creatorcontrib><creatorcontrib>Sluydts, Michael</creatorcontrib><creatorcontrib>Vanpoucke, Danny E. P.</creatorcontrib><creatorcontrib>Vijay, Sudarshan</creatorcontrib><creatorcontrib>Wolloch, Michael</creatorcontrib><creatorcontrib>Wortmann, Daniel</creatorcontrib><creatorcontrib>Yakutovich, Aliaksandr V.</creatorcontrib><creatorcontrib>Yu, Jusong</creatorcontrib><creatorcontrib>Zadoks, Austin</creatorcontrib><creatorcontrib>Zhu, Bonan</creatorcontrib><creatorcontrib>Pizzi, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature reviews physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosoni, Emanuele</au><au>Beal, Louis</au><au>Bercx, Marnik</au><au>Blaha, Peter</au><au>Blügel, Stefan</au><au>Bröder, Jens</au><au>Callsen, Martin</au><au>Cottenier, Stefaan</au><au>Degomme, Augustin</au><au>Dikan, Vladimir</au><au>Eimre, Kristjan</au><au>Flage-Larsen, Espen</au><au>Fornari, Marco</au><au>Garcia, Alberto</au><au>Genovese, Luigi</au><au>Giantomassi, Matteo</au><au>Huber, Sebastiaan P.</au><au>Janssen, Henning</au><au>Kastlunger, Georg</au><au>Krack, Matthias</au><au>Kresse, Georg</au><au>Kühne, Thomas D.</au><au>Lejaeghere, Kurt</au><au>Madsen, Georg K. H.</au><au>Marsman, Martijn</au><au>Marzari, Nicola</au><au>Michalicek, Gregor</au><au>Mirhosseini, Hossein</au><au>Müller, Tiziano M. A.</au><au>Petretto, Guido</au><au>Pickard, Chris J.</au><au>Poncé, Samuel</au><au>Rignanese, Gian-Marco</au><au>Rubel, Oleg</au><au>Ruh, Thomas</au><au>Sluydts, Michael</au><au>Vanpoucke, Danny E. P.</au><au>Vijay, Sudarshan</au><au>Wolloch, Michael</au><au>Wortmann, Daniel</au><au>Yakutovich, Aliaksandr V.</au><au>Yu, Jusong</au><au>Zadoks, Austin</au><au>Zhu, Bonan</au><au>Pizzi, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to verify the precision of density-functional-theory implementations via reproducible and universal workflows</atitle><jtitle>Nature reviews physics</jtitle><stitle>Nat Rev Phys</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>2522-5820</issn><eissn>2522-5820</eissn><abstract>Density-functional theory methods and codes adopting periodic boundary conditions are extensively used in condensed matter physics and materials science research. In 2016, their precision (how well properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. In this Expert Recommendation, we discuss recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z  = 1 to 96 and characterizing 10 prototypical cubic compounds for each element: four unaries and six oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Finally, we discuss the extent to which the current results for total energies can be reused for different goals. Verification efforts of density-functional theory (DFT) calculations are of crucial importance to evaluate the reliability of simulation results. In this Expert Recommendation, we suggest metrics for DFT verification, illustrating them with an all-electron reference dataset of 960 equations of state covering the whole periodic table (hydrogen to curium) and discuss the importance of improving pseudopotential codes. Key points Verification efforts are critical to assess the reliability of density-functional theory (DFT) simulations and provide results with properly quantified uncertainties. Developing standard computation protocols to perform verification studies and publishing curated and FAIR reference datasets can greatly aid their use to improve codes and computational approaches. The use of fully automated workflows with common interfaces between codes can guarantee uniformity, transferability and reproducibility of results. A careful description of the numerical and methodological details needed to compare with the reference datasets is essential; we discuss and illustrate this point with a dataset of 960 all-electron equations of state. Reference datasets should always include an explanation of the target property for which they were generated, and a discussion of their limits of applicability. Further extensions of DFT verification efforts are needed to cover more functionals, more computational approaches and the treatment of magnetic and relativistic (spin–orbit) effects. They should also aim at concurrently delivering optimized protocols that not only target ultimate precision, but also optimize the computational cost for a target accuracy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42254-023-00655-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7577-0198</orcidid><orcidid>https://orcid.org/0000-0002-9764-0199</orcidid><orcidid>https://orcid.org/0000-0001-6527-8511</orcidid><orcidid>https://orcid.org/0000-0001-7939-226X</orcidid><orcidid>https://orcid.org/0000-0001-5919-7336</orcidid><orcidid>https://orcid.org/0000-0001-5138-9579</orcidid><orcidid>https://orcid.org/0000-0001-5849-5788</orcidid><orcidid>https://orcid.org/0000-0002-3419-5526</orcidid><orcidid>https://orcid.org/0000-0001-9987-4733</orcidid><orcidid>https://orcid.org/0000-0003-2541-8043</orcidid><orcidid>https://orcid.org/0000-0003-3558-9487</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-4585-5478</orcidid><orcidid>https://orcid.org/0000-0002-2248-1904</orcidid><orcidid>https://orcid.org/0000-0001-5601-6130</orcidid><orcidid>https://orcid.org/0000-0002-3444-3286</orcidid><orcidid>https://orcid.org/0000-0003-4719-188X</orcidid><orcidid>https://orcid.org/0000-0001-5845-8880</orcidid><orcidid>https://orcid.org/0000-0002-9684-5432</orcidid><orcidid>https://orcid.org/0000-0001-5471-2407</orcidid><orcidid>https://orcid.org/0000-0002-4462-8209</orcidid><orcidid>https://orcid.org/0000-0002-3767-8734</orcidid><orcidid>https://orcid.org/0000-0002-2082-7027</orcidid><orcidid>https://orcid.org/0000-0002-3583-4377</orcidid><orcidid>https://orcid.org/0000-0002-7007-9813</orcidid><orcidid>https://orcid.org/0000-0001-9102-4259</orcidid><orcidid>https://orcid.org/0000-0002-1387-5717</orcidid><orcidid>https://orcid.org/0000-0001-9246-6067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5820
ispartof Nature reviews physics, 2024-01, Vol.6 (1), p.45-58
issn 2522-5820
2522-5820
language eng
recordid cdi_hal_primary_oai_HAL_hal_04738736v1
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/1034/1038
639/766/119
Condensed Matter
Engineering Sciences
Expert Recommendation
Materials
Physics
Physics and Astronomy
title How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T15%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20verify%20the%20precision%20of%20density-functional-theory%20implementations%20via%20reproducible%20and%20universal%20workflows&rft.jtitle=Nature%20reviews%20physics&rft.au=Bosoni,%20Emanuele&rft.date=2024-01-01&rft.volume=6&rft.issue=1&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=2522-5820&rft.eissn=2522-5820&rft_id=info:doi/10.1038/s42254-023-00655-3&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04738736v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true