Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination
Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiqui...
Gespeichert in:
Veröffentlicht in: | Glia 2024-12, Vol.72 (12), p.2247-2267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2267 |
---|---|
container_issue | 12 |
container_start_page | 2247 |
container_title | Glia |
container_volume | 72 |
creator | Wilson, Emma R. Nunes, Gustavo Della‐Flora Shen, Shichen Moore, Seth Gawron, Joseph Maxwell, Jessica Syed, Umair Hurley, Edward Lanka, Meghana Qu, Jun Désaubry, Laurent Wrabetz, Lawrence Poitelon, Yannick Feltri, M. Laura |
description | Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell.
Main Points
Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects.
PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation.
PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting. |
doi_str_mv | 10.1002/glia.24610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04736471v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122231230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0Eokvhwg9AlrgUpBSP7TjxcVVBW2klDsDZ8jrOrotjL3bSKv8eh5QeOHCZ0Yw-Pc2bh9BbIJdACP108E5fUi6APEMbILKtAJh4jjaklbwCLuEMvcr5jhAoQ_MSnTFJoa452aC0iznj2ONTike3d6MLmOJSvpnjgw4BG-t9xt2ckz1MXo824592xmPSIZvkTqOLAffajDFlbGIYU_TehQPu7L318TTYMGqPh9mWrV7o1-hFr322bx77Ofrx5fP3q5tq9_X69mq7qwwDQSqo94bta8t5V1spgbbQtaKB3hpDdd2whlrR25pzShpptBR130JxJmwNmrXsHH1YdY_aq1Nyg06zitqpm-1OLTvCGyZ4A_dQ2IuVLW_4Ndk8qsHlxboONk5ZMSJlSwQToqDv_0Hv4pRCcaIYUEpLYaRQH1fKpPLgZPunC4CoJTW1pKb-pFbgd4-S036w3RP6N6YCwAo8OG_n_0ip693tdhX9Dc8Oobc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122231230</pqid></control><display><type>article</type><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</creator><creatorcontrib>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</creatorcontrib><description>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell.
Main Points
Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects.
PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation.
PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</description><identifier>ISSN: 0894-1491</identifier><identifier>ISSN: 1098-1136</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24610</identifier><identifier>PMID: 39215540</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ablation ; Animals ; Axonogenesis ; Axons ; BAP32 ; BAP37 ; Biology ; BRN2 ; Cells, Cultured ; Cellular Biology ; Clonal deletion ; c‐JUN ; Defects ; Egr-2 protein ; Gene regulation ; Krox-20 protein ; KROX20 ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Nervous system ; OCT6 ; Peripheral nervous system ; Prohibitin ; Prohibitins ; Proteins ; REA ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Schwann cells ; Schwann Cells - metabolism ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Glia, 2024-12, Vol.72 (12), p.2247-2267</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</cites><orcidid>0000-0002-8069-0173 ; 0000-0001-9488-3905 ; 0000-0001-9323-3556 ; 0000-0001-9868-1569 ; 0000-0002-1192-2970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.24610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.24610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39215540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04736471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Nunes, Gustavo Della‐Flora</creatorcontrib><creatorcontrib>Shen, Shichen</creatorcontrib><creatorcontrib>Moore, Seth</creatorcontrib><creatorcontrib>Gawron, Joseph</creatorcontrib><creatorcontrib>Maxwell, Jessica</creatorcontrib><creatorcontrib>Syed, Umair</creatorcontrib><creatorcontrib>Hurley, Edward</creatorcontrib><creatorcontrib>Lanka, Meghana</creatorcontrib><creatorcontrib>Qu, Jun</creatorcontrib><creatorcontrib>Désaubry, Laurent</creatorcontrib><creatorcontrib>Wrabetz, Lawrence</creatorcontrib><creatorcontrib>Poitelon, Yannick</creatorcontrib><creatorcontrib>Feltri, M. Laura</creatorcontrib><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><title>Glia</title><addtitle>Glia</addtitle><description>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell.
Main Points
Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects.
PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation.
PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</description><subject>Ablation</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Axons</subject><subject>BAP32</subject><subject>BAP37</subject><subject>Biology</subject><subject>BRN2</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Clonal deletion</subject><subject>c‐JUN</subject><subject>Defects</subject><subject>Egr-2 protein</subject><subject>Gene regulation</subject><subject>Krox-20 protein</subject><subject>KROX20</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Nervous system</subject><subject>OCT6</subject><subject>Peripheral nervous system</subject><subject>Prohibitin</subject><subject>Prohibitins</subject><subject>Proteins</subject><subject>REA</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Schwann cells</subject><subject>Schwann Cells - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0894-1491</issn><issn>1098-1136</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0Eokvhwg9AlrgUpBSP7TjxcVVBW2klDsDZ8jrOrotjL3bSKv8eh5QeOHCZ0Yw-Pc2bh9BbIJdACP108E5fUi6APEMbILKtAJh4jjaklbwCLuEMvcr5jhAoQ_MSnTFJoa452aC0iznj2ONTike3d6MLmOJSvpnjgw4BG-t9xt2ckz1MXo824592xmPSIZvkTqOLAffajDFlbGIYU_TehQPu7L318TTYMGqPh9mWrV7o1-hFr322bx77Ofrx5fP3q5tq9_X69mq7qwwDQSqo94bta8t5V1spgbbQtaKB3hpDdd2whlrR25pzShpptBR130JxJmwNmrXsHH1YdY_aq1Nyg06zitqpm-1OLTvCGyZ4A_dQ2IuVLW_4Ndk8qsHlxboONk5ZMSJlSwQToqDv_0Hv4pRCcaIYUEpLYaRQH1fKpPLgZPunC4CoJTW1pKb-pFbgd4-S036w3RP6N6YCwAo8OG_n_0ip693tdhX9Dc8Oobc</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wilson, Emma R.</creator><creator>Nunes, Gustavo Della‐Flora</creator><creator>Shen, Shichen</creator><creator>Moore, Seth</creator><creator>Gawron, Joseph</creator><creator>Maxwell, Jessica</creator><creator>Syed, Umair</creator><creator>Hurley, Edward</creator><creator>Lanka, Meghana</creator><creator>Qu, Jun</creator><creator>Désaubry, Laurent</creator><creator>Wrabetz, Lawrence</creator><creator>Poitelon, Yannick</creator><creator>Feltri, M. Laura</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8069-0173</orcidid><orcidid>https://orcid.org/0000-0001-9488-3905</orcidid><orcidid>https://orcid.org/0000-0001-9323-3556</orcidid><orcidid>https://orcid.org/0000-0001-9868-1569</orcidid><orcidid>https://orcid.org/0000-0002-1192-2970</orcidid></search><sort><creationdate>202412</creationdate><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><author>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Axons</topic><topic>BAP32</topic><topic>BAP37</topic><topic>Biology</topic><topic>BRN2</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Clonal deletion</topic><topic>c‐JUN</topic><topic>Defects</topic><topic>Egr-2 protein</topic><topic>Gene regulation</topic><topic>Krox-20 protein</topic><topic>KROX20</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Nervous system</topic><topic>OCT6</topic><topic>Peripheral nervous system</topic><topic>Prohibitin</topic><topic>Prohibitins</topic><topic>Proteins</topic><topic>REA</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Schwann cells</topic><topic>Schwann Cells - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Nunes, Gustavo Della‐Flora</creatorcontrib><creatorcontrib>Shen, Shichen</creatorcontrib><creatorcontrib>Moore, Seth</creatorcontrib><creatorcontrib>Gawron, Joseph</creatorcontrib><creatorcontrib>Maxwell, Jessica</creatorcontrib><creatorcontrib>Syed, Umair</creatorcontrib><creatorcontrib>Hurley, Edward</creatorcontrib><creatorcontrib>Lanka, Meghana</creatorcontrib><creatorcontrib>Qu, Jun</creatorcontrib><creatorcontrib>Désaubry, Laurent</creatorcontrib><creatorcontrib>Wrabetz, Lawrence</creatorcontrib><creatorcontrib>Poitelon, Yannick</creatorcontrib><creatorcontrib>Feltri, M. Laura</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Emma R.</au><au>Nunes, Gustavo Della‐Flora</au><au>Shen, Shichen</au><au>Moore, Seth</au><au>Gawron, Joseph</au><au>Maxwell, Jessica</au><au>Syed, Umair</au><au>Hurley, Edward</au><au>Lanka, Meghana</au><au>Qu, Jun</au><au>Désaubry, Laurent</au><au>Wrabetz, Lawrence</au><au>Poitelon, Yannick</au><au>Feltri, M. Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2024-12</date><risdate>2024</risdate><volume>72</volume><issue>12</issue><spage>2247</spage><epage>2267</epage><pages>2247-2267</pages><issn>0894-1491</issn><issn>1098-1136</issn><eissn>1098-1136</eissn><abstract>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell.
Main Points
Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects.
PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation.
PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>39215540</pmid><doi>10.1002/glia.24610</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8069-0173</orcidid><orcidid>https://orcid.org/0000-0001-9488-3905</orcidid><orcidid>https://orcid.org/0000-0001-9323-3556</orcidid><orcidid>https://orcid.org/0000-0001-9868-1569</orcidid><orcidid>https://orcid.org/0000-0002-1192-2970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2024-12, Vol.72 (12), p.2247-2267 |
issn | 0894-1491 1098-1136 1098-1136 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04736471v1 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Ablation Animals Axonogenesis Axons BAP32 BAP37 Biology BRN2 Cells, Cultured Cellular Biology Clonal deletion c‐JUN Defects Egr-2 protein Gene regulation Krox-20 protein KROX20 Life Sciences Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Myelin Myelin Sheath - metabolism Myelination Nervous system OCT6 Peripheral nervous system Prohibitin Prohibitins Proteins REA Repressor Proteins - genetics Repressor Proteins - metabolism Schwann cells Schwann Cells - metabolism Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20prohibitin%202%20in%20Schwann%20cells%20dysregulates%20key%20transcription%20factors%20controlling%20developmental%20myelination&rft.jtitle=Glia&rft.au=Wilson,%20Emma%20R.&rft.date=2024-12&rft.volume=72&rft.issue=12&rft.spage=2247&rft.epage=2267&rft.pages=2247-2267&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24610&rft_dat=%3Cproquest_hal_p%3E3122231230%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122231230&rft_id=info:pmid/39215540&rfr_iscdi=true |