Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination

Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2024-12, Vol.72 (12), p.2247-2267
Hauptverfasser: Wilson, Emma R., Nunes, Gustavo Della‐Flora, Shen, Shichen, Moore, Seth, Gawron, Joseph, Maxwell, Jessica, Syed, Umair, Hurley, Edward, Lanka, Meghana, Qu, Jun, Désaubry, Laurent, Wrabetz, Lawrence, Poitelon, Yannick, Feltri, M. Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2267
container_issue 12
container_start_page 2247
container_title Glia
container_volume 72
creator Wilson, Emma R.
Nunes, Gustavo Della‐Flora
Shen, Shichen
Moore, Seth
Gawron, Joseph
Maxwell, Jessica
Syed, Umair
Hurley, Edward
Lanka, Meghana
Qu, Jun
Désaubry, Laurent
Wrabetz, Lawrence
Poitelon, Yannick
Feltri, M. Laura
description Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell. Main Points Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects. PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation. PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.
doi_str_mv 10.1002/glia.24610
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04736471v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122231230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0Eokvhwg9AlrgUpBSP7TjxcVVBW2klDsDZ8jrOrotjL3bSKv8eh5QeOHCZ0Yw-Pc2bh9BbIJdACP108E5fUi6APEMbILKtAJh4jjaklbwCLuEMvcr5jhAoQ_MSnTFJoa452aC0iznj2ONTike3d6MLmOJSvpnjgw4BG-t9xt2ckz1MXo824592xmPSIZvkTqOLAffajDFlbGIYU_TehQPu7L318TTYMGqPh9mWrV7o1-hFr322bx77Ofrx5fP3q5tq9_X69mq7qwwDQSqo94bta8t5V1spgbbQtaKB3hpDdd2whlrR25pzShpptBR130JxJmwNmrXsHH1YdY_aq1Nyg06zitqpm-1OLTvCGyZ4A_dQ2IuVLW_4Ndk8qsHlxboONk5ZMSJlSwQToqDv_0Hv4pRCcaIYUEpLYaRQH1fKpPLgZPunC4CoJTW1pKb-pFbgd4-S036w3RP6N6YCwAo8OG_n_0ip693tdhX9Dc8Oobc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122231230</pqid></control><display><type>article</type><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</creator><creatorcontrib>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</creatorcontrib><description>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell. Main Points Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects. PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation. PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</description><identifier>ISSN: 0894-1491</identifier><identifier>ISSN: 1098-1136</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24610</identifier><identifier>PMID: 39215540</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ablation ; Animals ; Axonogenesis ; Axons ; BAP32 ; BAP37 ; Biology ; BRN2 ; Cells, Cultured ; Cellular Biology ; Clonal deletion ; c‐JUN ; Defects ; Egr-2 protein ; Gene regulation ; Krox-20 protein ; KROX20 ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Nervous system ; OCT6 ; Peripheral nervous system ; Prohibitin ; Prohibitins ; Proteins ; REA ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Schwann cells ; Schwann Cells - metabolism ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Glia, 2024-12, Vol.72 (12), p.2247-2267</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</cites><orcidid>0000-0002-8069-0173 ; 0000-0001-9488-3905 ; 0000-0001-9323-3556 ; 0000-0001-9868-1569 ; 0000-0002-1192-2970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.24610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.24610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39215540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04736471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Nunes, Gustavo Della‐Flora</creatorcontrib><creatorcontrib>Shen, Shichen</creatorcontrib><creatorcontrib>Moore, Seth</creatorcontrib><creatorcontrib>Gawron, Joseph</creatorcontrib><creatorcontrib>Maxwell, Jessica</creatorcontrib><creatorcontrib>Syed, Umair</creatorcontrib><creatorcontrib>Hurley, Edward</creatorcontrib><creatorcontrib>Lanka, Meghana</creatorcontrib><creatorcontrib>Qu, Jun</creatorcontrib><creatorcontrib>Désaubry, Laurent</creatorcontrib><creatorcontrib>Wrabetz, Lawrence</creatorcontrib><creatorcontrib>Poitelon, Yannick</creatorcontrib><creatorcontrib>Feltri, M. Laura</creatorcontrib><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><title>Glia</title><addtitle>Glia</addtitle><description>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell. Main Points Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects. PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation. PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</description><subject>Ablation</subject><subject>Animals</subject><subject>Axonogenesis</subject><subject>Axons</subject><subject>BAP32</subject><subject>BAP37</subject><subject>Biology</subject><subject>BRN2</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Clonal deletion</subject><subject>c‐JUN</subject><subject>Defects</subject><subject>Egr-2 protein</subject><subject>Gene regulation</subject><subject>Krox-20 protein</subject><subject>KROX20</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Nervous system</subject><subject>OCT6</subject><subject>Peripheral nervous system</subject><subject>Prohibitin</subject><subject>Prohibitins</subject><subject>Proteins</subject><subject>REA</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Schwann cells</subject><subject>Schwann Cells - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0894-1491</issn><issn>1098-1136</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0Eokvhwg9AlrgUpBSP7TjxcVVBW2klDsDZ8jrOrotjL3bSKv8eh5QeOHCZ0Yw-Pc2bh9BbIJdACP108E5fUi6APEMbILKtAJh4jjaklbwCLuEMvcr5jhAoQ_MSnTFJoa452aC0iznj2ONTike3d6MLmOJSvpnjgw4BG-t9xt2ckz1MXo824592xmPSIZvkTqOLAffajDFlbGIYU_TehQPu7L318TTYMGqPh9mWrV7o1-hFr322bx77Ofrx5fP3q5tq9_X69mq7qwwDQSqo94bta8t5V1spgbbQtaKB3hpDdd2whlrR25pzShpptBR130JxJmwNmrXsHH1YdY_aq1Nyg06zitqpm-1OLTvCGyZ4A_dQ2IuVLW_4Ndk8qsHlxboONk5ZMSJlSwQToqDv_0Hv4pRCcaIYUEpLYaRQH1fKpPLgZPunC4CoJTW1pKb-pFbgd4-S036w3RP6N6YCwAo8OG_n_0ip693tdhX9Dc8Oobc</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wilson, Emma R.</creator><creator>Nunes, Gustavo Della‐Flora</creator><creator>Shen, Shichen</creator><creator>Moore, Seth</creator><creator>Gawron, Joseph</creator><creator>Maxwell, Jessica</creator><creator>Syed, Umair</creator><creator>Hurley, Edward</creator><creator>Lanka, Meghana</creator><creator>Qu, Jun</creator><creator>Désaubry, Laurent</creator><creator>Wrabetz, Lawrence</creator><creator>Poitelon, Yannick</creator><creator>Feltri, M. Laura</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8069-0173</orcidid><orcidid>https://orcid.org/0000-0001-9488-3905</orcidid><orcidid>https://orcid.org/0000-0001-9323-3556</orcidid><orcidid>https://orcid.org/0000-0001-9868-1569</orcidid><orcidid>https://orcid.org/0000-0002-1192-2970</orcidid></search><sort><creationdate>202412</creationdate><title>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</title><author>Wilson, Emma R. ; Nunes, Gustavo Della‐Flora ; Shen, Shichen ; Moore, Seth ; Gawron, Joseph ; Maxwell, Jessica ; Syed, Umair ; Hurley, Edward ; Lanka, Meghana ; Qu, Jun ; Désaubry, Laurent ; Wrabetz, Lawrence ; Poitelon, Yannick ; Feltri, M. Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3160-15bc3b5e44d5e991281d8671fecc2a57372e6fe5442079ca965f813926e51a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Animals</topic><topic>Axonogenesis</topic><topic>Axons</topic><topic>BAP32</topic><topic>BAP37</topic><topic>Biology</topic><topic>BRN2</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Clonal deletion</topic><topic>c‐JUN</topic><topic>Defects</topic><topic>Egr-2 protein</topic><topic>Gene regulation</topic><topic>Krox-20 protein</topic><topic>KROX20</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Nervous system</topic><topic>OCT6</topic><topic>Peripheral nervous system</topic><topic>Prohibitin</topic><topic>Prohibitins</topic><topic>Proteins</topic><topic>REA</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Schwann cells</topic><topic>Schwann Cells - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Emma R.</creatorcontrib><creatorcontrib>Nunes, Gustavo Della‐Flora</creatorcontrib><creatorcontrib>Shen, Shichen</creatorcontrib><creatorcontrib>Moore, Seth</creatorcontrib><creatorcontrib>Gawron, Joseph</creatorcontrib><creatorcontrib>Maxwell, Jessica</creatorcontrib><creatorcontrib>Syed, Umair</creatorcontrib><creatorcontrib>Hurley, Edward</creatorcontrib><creatorcontrib>Lanka, Meghana</creatorcontrib><creatorcontrib>Qu, Jun</creatorcontrib><creatorcontrib>Désaubry, Laurent</creatorcontrib><creatorcontrib>Wrabetz, Lawrence</creatorcontrib><creatorcontrib>Poitelon, Yannick</creatorcontrib><creatorcontrib>Feltri, M. Laura</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Emma R.</au><au>Nunes, Gustavo Della‐Flora</au><au>Shen, Shichen</au><au>Moore, Seth</au><au>Gawron, Joseph</au><au>Maxwell, Jessica</au><au>Syed, Umair</au><au>Hurley, Edward</au><au>Lanka, Meghana</au><au>Qu, Jun</au><au>Désaubry, Laurent</au><au>Wrabetz, Lawrence</au><au>Poitelon, Yannick</au><au>Feltri, M. Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2024-12</date><risdate>2024</risdate><volume>72</volume><issue>12</issue><spage>2247</spage><epage>2267</epage><pages>2247-2267</pages><issn>0894-1491</issn><issn>1098-1136</issn><eissn>1098-1136</eissn><abstract>Schwann cells are critical for the proper development and function of the peripheral nervous system (PNS), where they form a collaborative relationship with axons. Past studies highlighted that a pair of proteins called the prohibitins play major roles in Schwann cell biology. Prohibitins are ubiquitously expressed and versatile proteins. We have previously shown that while prohibitins play a crucial role in Schwann cell mitochondria for long‐term myelin maintenance and axon health, they may also be present at the Schwann cell‐axon interface during development. Here, we expand on this, showing that drug‐mediated modulation of prohibitins in vitro disrupts myelination and confirming that Schwann cell‐specific ablation of prohibitin 2 (Phb2) in vivo results in severe defects in radial sorting and myelination. We show in vivo that Phb2‐null Schwann cells cannot effectively proliferate and the transcription factors EGR2 (KROX20), POU3F1 (OCT6), and POU3F2 (BRN2), necessary for proper Schwann cell maturation, are dysregulated. Schwann cell‐specific deletion of Jun, a transcription factor associated with negative regulation of myelination, confers partial rescue of the developmental defect seen in mice lacking Schwann cell Phb2. Finally, we identify a pool of candidate PHB2 interactors that change their interaction with PHB2 depending on neuronal signals, and thus are potential mediators of PHB2‐associated developmental defects. This work develops our understanding of Schwann cell biology, revealing that Phb2 may modulate the timely expression of transcription factors necessary for proper PNS development, and proposing candidates that may play a role in PHB2‐mediated integration of axon signals in the Schwann cell. Main Points Loss of Schwann cell (SC) PHB2 causes severe radial sorting and myelination defects. PHB2‐null SCs exhibit poor proliferation and transcription factor dysregulation. PHB2 may play a role in formation of SC‐axon contacts and cytoskeletal remodeling required for radial sorting.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39215540</pmid><doi>10.1002/glia.24610</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8069-0173</orcidid><orcidid>https://orcid.org/0000-0001-9488-3905</orcidid><orcidid>https://orcid.org/0000-0001-9323-3556</orcidid><orcidid>https://orcid.org/0000-0001-9868-1569</orcidid><orcidid>https://orcid.org/0000-0002-1192-2970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2024-12, Vol.72 (12), p.2247-2267
issn 0894-1491
1098-1136
1098-1136
language eng
recordid cdi_hal_primary_oai_HAL_hal_04736471v1
source MEDLINE; Wiley Online Library All Journals
subjects Ablation
Animals
Axonogenesis
Axons
BAP32
BAP37
Biology
BRN2
Cells, Cultured
Cellular Biology
Clonal deletion
c‐JUN
Defects
Egr-2 protein
Gene regulation
Krox-20 protein
KROX20
Life Sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Myelin
Myelin Sheath - metabolism
Myelination
Nervous system
OCT6
Peripheral nervous system
Prohibitin
Prohibitins
Proteins
REA
Repressor Proteins - genetics
Repressor Proteins - metabolism
Schwann cells
Schwann Cells - metabolism
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title Loss of prohibitin 2 in Schwann cells dysregulates key transcription factors controlling developmental myelination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20prohibitin%202%20in%20Schwann%20cells%20dysregulates%20key%20transcription%20factors%20controlling%20developmental%20myelination&rft.jtitle=Glia&rft.au=Wilson,%20Emma%20R.&rft.date=2024-12&rft.volume=72&rft.issue=12&rft.spage=2247&rft.epage=2267&rft.pages=2247-2267&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24610&rft_dat=%3Cproquest_hal_p%3E3122231230%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122231230&rft_id=info:pmid/39215540&rfr_iscdi=true