Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein
In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development o...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2004-02, Vol.134 (2), p.649-663 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 2 |
container_start_page | 649 |
container_title | Plant physiology (Bethesda) |
container_volume | 134 |
creator | Jean-Louis Magnard Thierry Heckel Agnès Massonneau Jean-Pierre Wisniewski Sylvain Cordelier Hervé Lassagne Perez, Pascual Dumas, Christian Peter M. Rogowsky |
description | In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events. |
doi_str_mv | 10.1104/pp.103.030767 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04735846v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281595</jstor_id><sourcerecordid>4281595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</originalsourceid><addsrcrecordid>eNpF0c9r2zAUB3BRNtas3bG3MXTpoQen7-lHLB9LSNtBwkJYKfRiJFlOVWzLk5JC-9fPwaE96SF93gN9HyEXCFNEENd9P0XgU-CQz_ITMkHJWcakUF_IBGCoQanilHxP6QUAkKP4Rk5R5BwgLybkcRVi_xy2rnPJJxpqutL-3dFFa-JbSHTj_u19dIk-tevNesllhnTR2VD5bks1XTc67XxFN96EFFrd0HUMO-e7c_K11k1yP47nGXm4Xfyd32fLP3e_5zfLzApR7DKHghkwhhlkM66NqYyUqDW3tpIOaqbETIMEZVWdW8ZkXgisnUCnZVFXnJ-Rq3Hus27KPvpWx7cyaF_e3yzLwx0MX5XDlFccbDZaG0NK0dUfDQjlIcyy74eSl2OYg_81-n5vWld96mN6A7g8Ap2sbuqoO-vTpxu2oNTs4H6O7iXtQvx4F0yhLCT_DyIphJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</creator><creatorcontrib>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</creatorcontrib><description>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.030767</identifier><identifier>PMID: 14730079</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Biological and medical sciences ; Chromosome Mapping ; Cloning, Molecular ; Corn ; Development and Hormone Action ; DNA ; DNA Transposable Elements - genetics ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; DNA, Plant - chemistry ; DNA, Plant - genetics ; Economic plant physiology ; Embryos ; Endosperm ; Exons ; Fructification and ripening ; Fructification, ripening. Postharvest physiology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genetic Complementation Test ; Genetic mutation ; Genomics ; Growth and development ; In Situ Hybridization ; Life Sciences ; Microscopy, Confocal ; Microscopy, Electron ; Molecular Sequence Data ; Morphogenesis - genetics ; Morphogenesis - physiology ; Mutagenesis, Insertional ; Mutation ; Phenotype ; Phenotypes ; Plant Epidermis - genetics ; Plant Epidermis - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified ; Plastids ; Plastids - genetics ; Plastids - physiology ; Polymorphism, Restriction Fragment Length ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Seeds - genetics ; Seeds - growth & development ; Seeds - ultrastructure ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Transgenes - genetics ; Vegetative and sexual reproduction, floral biology, fructification ; Zea mays - embryology ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.649-663</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</citedby><cites>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</cites><orcidid>0000-0001-8312-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281595$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281595$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15488869$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14730079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04735846$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jean-Louis Magnard</creatorcontrib><creatorcontrib>Thierry Heckel</creatorcontrib><creatorcontrib>Agnès Massonneau</creatorcontrib><creatorcontrib>Jean-Pierre Wisniewski</creatorcontrib><creatorcontrib>Sylvain Cordelier</creatorcontrib><creatorcontrib>Hervé Lassagne</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Dumas, Christian</creatorcontrib><creatorcontrib>Peter M. Rogowsky</creatorcontrib><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>Cloning, Molecular</subject><subject>Corn</subject><subject>Development and Hormone Action</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Plant - chemistry</subject><subject>DNA, Plant - genetics</subject><subject>Economic plant physiology</subject><subject>Embryos</subject><subject>Endosperm</subject><subject>Exons</subject><subject>Fructification and ripening</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Complementation Test</subject><subject>Genetic mutation</subject><subject>Genomics</subject><subject>Growth and development</subject><subject>In Situ Hybridization</subject><subject>Life Sciences</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>Molecular Sequence Data</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - physiology</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant Epidermis - genetics</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Plastids - physiology</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Seeds - ultrastructure</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>Transgenes - genetics</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><subject>Zea mays - embryology</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0c9r2zAUB3BRNtas3bG3MXTpoQen7-lHLB9LSNtBwkJYKfRiJFlOVWzLk5JC-9fPwaE96SF93gN9HyEXCFNEENd9P0XgU-CQz_ITMkHJWcakUF_IBGCoQanilHxP6QUAkKP4Rk5R5BwgLybkcRVi_xy2rnPJJxpqutL-3dFFa-JbSHTj_u19dIk-tevNesllhnTR2VD5bks1XTc67XxFN96EFFrd0HUMO-e7c_K11k1yP47nGXm4Xfyd32fLP3e_5zfLzApR7DKHghkwhhlkM66NqYyUqDW3tpIOaqbETIMEZVWdW8ZkXgisnUCnZVFXnJ-Rq3Hus27KPvpWx7cyaF_e3yzLwx0MX5XDlFccbDZaG0NK0dUfDQjlIcyy74eSl2OYg_81-n5vWld96mN6A7g8Ap2sbuqoO-vTpxu2oNTs4H6O7iXtQvx4F0yhLCT_DyIphJA</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Jean-Louis Magnard</creator><creator>Thierry Heckel</creator><creator>Agnès Massonneau</creator><creator>Jean-Pierre Wisniewski</creator><creator>Sylvain Cordelier</creator><creator>Hervé Lassagne</creator><creator>Perez, Pascual</creator><creator>Dumas, Christian</creator><creator>Peter M. Rogowsky</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8312-2633</orcidid></search><sort><creationdate>20040201</creationdate><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><author>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>Cloning, Molecular</topic><topic>Corn</topic><topic>Development and Hormone Action</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Plant - chemistry</topic><topic>DNA, Plant - genetics</topic><topic>Economic plant physiology</topic><topic>Embryos</topic><topic>Endosperm</topic><topic>Exons</topic><topic>Fructification and ripening</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Complementation Test</topic><topic>Genetic mutation</topic><topic>Genomics</topic><topic>Growth and development</topic><topic>In Situ Hybridization</topic><topic>Life Sciences</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>Molecular Sequence Data</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - physiology</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant Epidermis - genetics</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Plastids - physiology</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Seeds - ultrastructure</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>Transgenes - genetics</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><topic>Zea mays - embryology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jean-Louis Magnard</creatorcontrib><creatorcontrib>Thierry Heckel</creatorcontrib><creatorcontrib>Agnès Massonneau</creatorcontrib><creatorcontrib>Jean-Pierre Wisniewski</creatorcontrib><creatorcontrib>Sylvain Cordelier</creatorcontrib><creatorcontrib>Hervé Lassagne</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Dumas, Christian</creatorcontrib><creatorcontrib>Peter M. Rogowsky</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean-Louis Magnard</au><au>Thierry Heckel</au><au>Agnès Massonneau</au><au>Jean-Pierre Wisniewski</au><au>Sylvain Cordelier</au><au>Hervé Lassagne</au><au>Perez, Pascual</au><au>Dumas, Christian</au><au>Peter M. Rogowsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>134</volume><issue>2</issue><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14730079</pmid><doi>10.1104/pp.103.030767</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8312-2633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.649-663 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04735846v1 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Agronomy. Soil science and plant productions Amino Acid Sequence Biological and medical sciences Chromosome Mapping Cloning, Molecular Corn Development and Hormone Action DNA DNA Transposable Elements - genetics DNA, Complementary - chemistry DNA, Complementary - genetics DNA, Plant - chemistry DNA, Plant - genetics Economic plant physiology Embryos Endosperm Exons Fructification and ripening Fructification, ripening. Postharvest physiology Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Genetic Complementation Test Genetic mutation Genomics Growth and development In Situ Hybridization Life Sciences Microscopy, Confocal Microscopy, Electron Molecular Sequence Data Morphogenesis - genetics Morphogenesis - physiology Mutagenesis, Insertional Mutation Phenotype Phenotypes Plant Epidermis - genetics Plant Epidermis - metabolism Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plants Plants, Genetically Modified Plastids Plastids - genetics Plastids - physiology Polymorphism, Restriction Fragment Length Ribosomal Proteins - genetics Ribosomal Proteins - metabolism Seeds - genetics Seeds - growth & development Seeds - ultrastructure Sequence Analysis, DNA Sequence Homology, Amino Acid Transgenes - genetics Vegetative and sexual reproduction, floral biology, fructification Zea mays - embryology Zea mays - genetics |
title | Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphogenesis%20of%20Maize%20Embryos%20Requires%20ZmPRPL35-1%20Encoding%20a%20Plastid%20Ribosomal%20Protein&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jean-Louis%20Magnard&rft.date=2004-02-01&rft.volume=134&rft.issue=2&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.030767&rft_dat=%3Cjstor_hal_p%3E4281595%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/14730079&rft_jstor_id=4281595&rfr_iscdi=true |