Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein

In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2004-02, Vol.134 (2), p.649-663
Hauptverfasser: Jean-Louis Magnard, Thierry Heckel, Agnès Massonneau, Jean-Pierre Wisniewski, Sylvain Cordelier, Hervé Lassagne, Perez, Pascual, Dumas, Christian, Peter M. Rogowsky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 2
container_start_page 649
container_title Plant physiology (Bethesda)
container_volume 134
creator Jean-Louis Magnard
Thierry Heckel
Agnès Massonneau
Jean-Pierre Wisniewski
Sylvain Cordelier
Hervé Lassagne
Perez, Pascual
Dumas, Christian
Peter M. Rogowsky
description In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.
doi_str_mv 10.1104/pp.103.030767
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04735846v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281595</jstor_id><sourcerecordid>4281595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</originalsourceid><addsrcrecordid>eNpF0c9r2zAUB3BRNtas3bG3MXTpoQen7-lHLB9LSNtBwkJYKfRiJFlOVWzLk5JC-9fPwaE96SF93gN9HyEXCFNEENd9P0XgU-CQz_ITMkHJWcakUF_IBGCoQanilHxP6QUAkKP4Rk5R5BwgLybkcRVi_xy2rnPJJxpqutL-3dFFa-JbSHTj_u19dIk-tevNesllhnTR2VD5bks1XTc67XxFN96EFFrd0HUMO-e7c_K11k1yP47nGXm4Xfyd32fLP3e_5zfLzApR7DKHghkwhhlkM66NqYyUqDW3tpIOaqbETIMEZVWdW8ZkXgisnUCnZVFXnJ-Rq3Hus27KPvpWx7cyaF_e3yzLwx0MX5XDlFccbDZaG0NK0dUfDQjlIcyy74eSl2OYg_81-n5vWld96mN6A7g8Ap2sbuqoO-vTpxu2oNTs4H6O7iXtQvx4F0yhLCT_DyIphJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</creator><creatorcontrib>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</creatorcontrib><description>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.030767</identifier><identifier>PMID: 14730079</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Biological and medical sciences ; Chromosome Mapping ; Cloning, Molecular ; Corn ; Development and Hormone Action ; DNA ; DNA Transposable Elements - genetics ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; DNA, Plant - chemistry ; DNA, Plant - genetics ; Economic plant physiology ; Embryos ; Endosperm ; Exons ; Fructification and ripening ; Fructification, ripening. Postharvest physiology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genetic Complementation Test ; Genetic mutation ; Genomics ; Growth and development ; In Situ Hybridization ; Life Sciences ; Microscopy, Confocal ; Microscopy, Electron ; Molecular Sequence Data ; Morphogenesis - genetics ; Morphogenesis - physiology ; Mutagenesis, Insertional ; Mutation ; Phenotype ; Phenotypes ; Plant Epidermis - genetics ; Plant Epidermis - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified ; Plastids ; Plastids - genetics ; Plastids - physiology ; Polymorphism, Restriction Fragment Length ; Ribosomal Proteins - genetics ; Ribosomal Proteins - metabolism ; Seeds - genetics ; Seeds - growth &amp; development ; Seeds - ultrastructure ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Transgenes - genetics ; Vegetative and sexual reproduction, floral biology, fructification ; Zea mays - embryology ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.649-663</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</citedby><cites>FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</cites><orcidid>0000-0001-8312-2633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281595$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281595$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15488869$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14730079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-04735846$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jean-Louis Magnard</creatorcontrib><creatorcontrib>Thierry Heckel</creatorcontrib><creatorcontrib>Agnès Massonneau</creatorcontrib><creatorcontrib>Jean-Pierre Wisniewski</creatorcontrib><creatorcontrib>Sylvain Cordelier</creatorcontrib><creatorcontrib>Hervé Lassagne</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Dumas, Christian</creatorcontrib><creatorcontrib>Peter M. Rogowsky</creatorcontrib><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>Cloning, Molecular</subject><subject>Corn</subject><subject>Development and Hormone Action</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Plant - chemistry</subject><subject>DNA, Plant - genetics</subject><subject>Economic plant physiology</subject><subject>Embryos</subject><subject>Endosperm</subject><subject>Exons</subject><subject>Fructification and ripening</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Complementation Test</subject><subject>Genetic mutation</subject><subject>Genomics</subject><subject>Growth and development</subject><subject>In Situ Hybridization</subject><subject>Life Sciences</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Electron</subject><subject>Molecular Sequence Data</subject><subject>Morphogenesis - genetics</subject><subject>Morphogenesis - physiology</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant Epidermis - genetics</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plastids</subject><subject>Plastids - genetics</subject><subject>Plastids - physiology</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosomal Proteins - metabolism</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Seeds - ultrastructure</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>Transgenes - genetics</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><subject>Zea mays - embryology</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0c9r2zAUB3BRNtas3bG3MXTpoQen7-lHLB9LSNtBwkJYKfRiJFlOVWzLk5JC-9fPwaE96SF93gN9HyEXCFNEENd9P0XgU-CQz_ITMkHJWcakUF_IBGCoQanilHxP6QUAkKP4Rk5R5BwgLybkcRVi_xy2rnPJJxpqutL-3dFFa-JbSHTj_u19dIk-tevNesllhnTR2VD5bks1XTc67XxFN96EFFrd0HUMO-e7c_K11k1yP47nGXm4Xfyd32fLP3e_5zfLzApR7DKHghkwhhlkM66NqYyUqDW3tpIOaqbETIMEZVWdW8ZkXgisnUCnZVFXnJ-Rq3Hus27KPvpWx7cyaF_e3yzLwx0MX5XDlFccbDZaG0NK0dUfDQjlIcyy74eSl2OYg_81-n5vWld96mN6A7g8Ap2sbuqoO-vTpxu2oNTs4H6O7iXtQvx4F0yhLCT_DyIphJA</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Jean-Louis Magnard</creator><creator>Thierry Heckel</creator><creator>Agnès Massonneau</creator><creator>Jean-Pierre Wisniewski</creator><creator>Sylvain Cordelier</creator><creator>Hervé Lassagne</creator><creator>Perez, Pascual</creator><creator>Dumas, Christian</creator><creator>Peter M. Rogowsky</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8312-2633</orcidid></search><sort><creationdate>20040201</creationdate><title>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</title><author>Jean-Louis Magnard ; Thierry Heckel ; Agnès Massonneau ; Jean-Pierre Wisniewski ; Sylvain Cordelier ; Hervé Lassagne ; Perez, Pascual ; Dumas, Christian ; Peter M. Rogowsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e142b0bb2b1263abbdb551aa3ccd5e0f2846a0508c8f7c2257941fe41ea59fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>Cloning, Molecular</topic><topic>Corn</topic><topic>Development and Hormone Action</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Plant - chemistry</topic><topic>DNA, Plant - genetics</topic><topic>Economic plant physiology</topic><topic>Embryos</topic><topic>Endosperm</topic><topic>Exons</topic><topic>Fructification and ripening</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Complementation Test</topic><topic>Genetic mutation</topic><topic>Genomics</topic><topic>Growth and development</topic><topic>In Situ Hybridization</topic><topic>Life Sciences</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Electron</topic><topic>Molecular Sequence Data</topic><topic>Morphogenesis - genetics</topic><topic>Morphogenesis - physiology</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant Epidermis - genetics</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plastids</topic><topic>Plastids - genetics</topic><topic>Plastids - physiology</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosomal Proteins - metabolism</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Seeds - ultrastructure</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>Transgenes - genetics</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><topic>Zea mays - embryology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jean-Louis Magnard</creatorcontrib><creatorcontrib>Thierry Heckel</creatorcontrib><creatorcontrib>Agnès Massonneau</creatorcontrib><creatorcontrib>Jean-Pierre Wisniewski</creatorcontrib><creatorcontrib>Sylvain Cordelier</creatorcontrib><creatorcontrib>Hervé Lassagne</creatorcontrib><creatorcontrib>Perez, Pascual</creatorcontrib><creatorcontrib>Dumas, Christian</creatorcontrib><creatorcontrib>Peter M. Rogowsky</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jean-Louis Magnard</au><au>Thierry Heckel</au><au>Agnès Massonneau</au><au>Jean-Pierre Wisniewski</au><au>Sylvain Cordelier</au><au>Hervé Lassagne</au><au>Perez, Pascual</au><au>Dumas, Christian</au><au>Peter M. Rogowsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>134</volume><issue>2</issue><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>In emb (embryo specific) mutants of maize (Zea mays), the two fertilization products have opposite fates: Although the endosperm develops normally, the embryo shows more or less severe aberrations in its development, resulting in nonviable seed. We show here that in mutant emb8516, the development of mutant embryos deviates as soon as the transition stage from that of wild-type siblings. The basic events of pattern formation take place because mutant embryos display an apical-basal polarity and differentiate a protoderm. However, morphogenesis is strongly aberrant. Young mutant embryos are characterized by protuberances at their suspensor-like extremity, leading eventually to structures of irregular shape and variable size. The lack of a scutellum or coleoptile attest to the virtual absence of morphogenesis at the embryo proper-like extremity. Molecular cloning of the mutation was achieved based on cosegregation between the mutant phenotype and the insertion of a MuDR element. The Mu insertion is located in gene ZmPRPL35-1, likely coding for protein L35 of the large subunit of plastid ribosomes. The isolation of a second allele g2422 and the complementation of mutant emb8516 with a genomic clone of ZmPRPL35-1 confirm that a lesion in ZmPRPL35-1 causes the emb phenotype. ZmPRPL35-1 is a low-copy gene present at two loci on chromosome arms 6L and 9L. The gene is constitutively expressed in all major tissues of wild-type maize plants. Lack of expression in emb/emb endosperm shows that endosperm development does not require a functional copy of ZmPRPL35-1 and suggests a link between plastids and embryo-specific signaling events.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14730079</pmid><doi>10.1104/pp.103.030767</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8312-2633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.649-663
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_04735846v1
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Agronomy. Soil science and plant productions
Amino Acid Sequence
Biological and medical sciences
Chromosome Mapping
Cloning, Molecular
Corn
Development and Hormone Action
DNA
DNA Transposable Elements - genetics
DNA, Complementary - chemistry
DNA, Complementary - genetics
DNA, Plant - chemistry
DNA, Plant - genetics
Economic plant physiology
Embryos
Endosperm
Exons
Fructification and ripening
Fructification, ripening. Postharvest physiology
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genetic Complementation Test
Genetic mutation
Genomics
Growth and development
In Situ Hybridization
Life Sciences
Microscopy, Confocal
Microscopy, Electron
Molecular Sequence Data
Morphogenesis - genetics
Morphogenesis - physiology
Mutagenesis, Insertional
Mutation
Phenotype
Phenotypes
Plant Epidermis - genetics
Plant Epidermis - metabolism
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified
Plastids
Plastids - genetics
Plastids - physiology
Polymorphism, Restriction Fragment Length
Ribosomal Proteins - genetics
Ribosomal Proteins - metabolism
Seeds - genetics
Seeds - growth & development
Seeds - ultrastructure
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Transgenes - genetics
Vegetative and sexual reproduction, floral biology, fructification
Zea mays - embryology
Zea mays - genetics
title Morphogenesis of Maize Embryos Requires ZmPRPL35-1 Encoding a Plastid Ribosomal Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphogenesis%20of%20Maize%20Embryos%20Requires%20ZmPRPL35-1%20Encoding%20a%20Plastid%20Ribosomal%20Protein&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Jean-Louis%20Magnard&rft.date=2004-02-01&rft.volume=134&rft.issue=2&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.030767&rft_dat=%3Cjstor_hal_p%3E4281595%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/14730079&rft_jstor_id=4281595&rfr_iscdi=true