Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE

The objective of this work is to linearly investigate the plasma instabilities that will be observed in the linear SPEKTRE device, currently being assembled at Institut Jean Lamour. Two configurations are considered. In the first configuration, the magnetic field is set to 0.1 T with no ion temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2024-11, Vol.31 (11)
Hauptverfasser: Gravier, E., Brochard, F., Lesur, M., Moritz, J., Heuraux, S., Genève, D., Rouyer, T., Del Sarto, D., Faudot, E., Ghizzo, A., Lemoine, N., Réveillé, T., Urbanczyk, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of plasmas
container_volume 31
creator Gravier, E.
Brochard, F.
Lesur, M.
Moritz, J.
Heuraux, S.
Genève, D.
Rouyer, T.
Del Sarto, D.
Faudot, E.
Ghizzo, A.
Lemoine, N.
Réveillé, T.
Urbanczyk, G.
description The objective of this work is to linearly investigate the plasma instabilities that will be observed in the linear SPEKTRE device, currently being assembled at Institut Jean Lamour. Two configurations are considered. In the first configuration, the magnetic field is set to 0.1 T with no ion temperature gradient (ITG), resulting in the observation of only collisional drift waves (DW). In the second configuration, the magnetic field is set to 0.44 T, and ions can be heated using an ion cyclotron radiofrequency heating (ICRH) system to establish an ITG. Under these conditions, two major types of instabilities may be observed: collisional DW and ITG instabilities. ITG instabilities become more unstable than DW when the ratio of the characteristic lengths of the ion temperature to ion density profiles η=ΩT*/Ωn*>2.6. The observation of such a transition between the two types of instabilities will be possible on this machine using the ICRH system. The azimuthal mode number m of the most unstable mode is significantly larger for helium plasma compared to argon plasma. Furthermore, for the plasma parameters considered in both configurations, a fluid model is often sufficient to accurately describe DW, while a kinetic model is required to accurately describe ITG instabilities. There is a 30% difference between the ITG instability growth rates predicted by the fluid model and those predicted by the kinetic model.
doi_str_mv 10.1063/5.0227546
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04733195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3125768618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-36358310f5149fa13ed803c96240f395d1da07a5254d7c9b84b9949473396abd3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAiCs7phf8g4JVCZ9J8NZdjTicOFJ2gV-G0SbeMrZ1JNvHf2zLRO29ywuHh5fAmyTnBA4IFveYDnGWSM3GQ9AjOVSqFZIfdX-JUCPZ2nJyEsMQYM8HzXvJ-410V0SfsbEBQG-SaGkW73lgPcestmnswztYRuTpEKNzKRddS16qFRSvw8_Z1tQWPjN250qKXp_HD7Hl8mhxVsAr27Gf2k9fb8Ww0SaePd_ej4TQtM05iSgXlOSW44oSpCgi1Jse0VCJjuKKKG2IAS-AZZ0aWqshZoRRTTFKqBBSG9pPLfe4CVnrj3Rr8l27A6clwqrsd7ixRfEdae7G3G998bG2Ietlsfd2epynJuBS5IPlfYumbELytfmMJ1l3Lmuufllt7tbehdBFi294_-BvO7nmS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125768618</pqid></control><display><type>article</type><title>Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE</title><source>Alma/SFX Local Collection</source><creator>Gravier, E. ; Brochard, F. ; Lesur, M. ; Moritz, J. ; Heuraux, S. ; Genève, D. ; Rouyer, T. ; Del Sarto, D. ; Faudot, E. ; Ghizzo, A. ; Lemoine, N. ; Réveillé, T. ; Urbanczyk, G.</creator><creatorcontrib>Gravier, E. ; Brochard, F. ; Lesur, M. ; Moritz, J. ; Heuraux, S. ; Genève, D. ; Rouyer, T. ; Del Sarto, D. ; Faudot, E. ; Ghizzo, A. ; Lemoine, N. ; Réveillé, T. ; Urbanczyk, G.</creatorcontrib><description>The objective of this work is to linearly investigate the plasma instabilities that will be observed in the linear SPEKTRE device, currently being assembled at Institut Jean Lamour. Two configurations are considered. In the first configuration, the magnetic field is set to 0.1 T with no ion temperature gradient (ITG), resulting in the observation of only collisional drift waves (DW). In the second configuration, the magnetic field is set to 0.44 T, and ions can be heated using an ion cyclotron radiofrequency heating (ICRH) system to establish an ITG. Under these conditions, two major types of instabilities may be observed: collisional DW and ITG instabilities. ITG instabilities become more unstable than DW when the ratio of the characteristic lengths of the ion temperature to ion density profiles η=ΩT*/Ωn*&gt;2.6. The observation of such a transition between the two types of instabilities will be possible on this machine using the ICRH system. The azimuthal mode number m of the most unstable mode is significantly larger for helium plasma compared to argon plasma. Furthermore, for the plasma parameters considered in both configurations, a fluid model is often sufficient to accurately describe DW, while a kinetic model is required to accurately describe ITG instabilities. There is a 30% difference between the ITG instability growth rates predicted by the fluid model and those predicted by the kinetic model.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0227546</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Argon plasma ; Configurations ; Cyclotrons ; Helium plasma ; Ion density (concentration) ; Ion temperature ; Magnetic fields ; Magnetohydrodynamic stability ; Physics ; Plasma ; Radio frequency</subject><ispartof>Physics of plasmas, 2024-11, Vol.31 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-36358310f5149fa13ed803c96240f395d1da07a5254d7c9b84b9949473396abd3</cites><orcidid>0000-0001-7489-8843 ; 0000-0001-7035-4574 ; 0000-0001-6250-9230 ; 0000-0001-9747-5616 ; 0000-0002-4593-6270 ; 0000-0002-8911-5546 ; 0009-0009-0078-9527 ; 0000-0002-4026-6802 ; 0000-0002-6578-6046 ; 0000-0003-3519-0070 ; 0000-0003-3870-9229 ; 0000-0003-1690-1391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04733195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravier, E.</creatorcontrib><creatorcontrib>Brochard, F.</creatorcontrib><creatorcontrib>Lesur, M.</creatorcontrib><creatorcontrib>Moritz, J.</creatorcontrib><creatorcontrib>Heuraux, S.</creatorcontrib><creatorcontrib>Genève, D.</creatorcontrib><creatorcontrib>Rouyer, T.</creatorcontrib><creatorcontrib>Del Sarto, D.</creatorcontrib><creatorcontrib>Faudot, E.</creatorcontrib><creatorcontrib>Ghizzo, A.</creatorcontrib><creatorcontrib>Lemoine, N.</creatorcontrib><creatorcontrib>Réveillé, T.</creatorcontrib><creatorcontrib>Urbanczyk, G.</creatorcontrib><title>Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE</title><title>Physics of plasmas</title><description>The objective of this work is to linearly investigate the plasma instabilities that will be observed in the linear SPEKTRE device, currently being assembled at Institut Jean Lamour. Two configurations are considered. In the first configuration, the magnetic field is set to 0.1 T with no ion temperature gradient (ITG), resulting in the observation of only collisional drift waves (DW). In the second configuration, the magnetic field is set to 0.44 T, and ions can be heated using an ion cyclotron radiofrequency heating (ICRH) system to establish an ITG. Under these conditions, two major types of instabilities may be observed: collisional DW and ITG instabilities. ITG instabilities become more unstable than DW when the ratio of the characteristic lengths of the ion temperature to ion density profiles η=ΩT*/Ωn*&gt;2.6. The observation of such a transition between the two types of instabilities will be possible on this machine using the ICRH system. The azimuthal mode number m of the most unstable mode is significantly larger for helium plasma compared to argon plasma. Furthermore, for the plasma parameters considered in both configurations, a fluid model is often sufficient to accurately describe DW, while a kinetic model is required to accurately describe ITG instabilities. There is a 30% difference between the ITG instability growth rates predicted by the fluid model and those predicted by the kinetic model.</description><subject>Argon plasma</subject><subject>Configurations</subject><subject>Cyclotrons</subject><subject>Helium plasma</subject><subject>Ion density (concentration)</subject><subject>Ion temperature</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic stability</subject><subject>Physics</subject><subject>Plasma</subject><subject>Radio frequency</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAiCs7phf8g4JVCZ9J8NZdjTicOFJ2gV-G0SbeMrZ1JNvHf2zLRO29ywuHh5fAmyTnBA4IFveYDnGWSM3GQ9AjOVSqFZIfdX-JUCPZ2nJyEsMQYM8HzXvJ-410V0SfsbEBQG-SaGkW73lgPcestmnswztYRuTpEKNzKRddS16qFRSvw8_Z1tQWPjN250qKXp_HD7Hl8mhxVsAr27Gf2k9fb8Ww0SaePd_ej4TQtM05iSgXlOSW44oSpCgi1Jse0VCJjuKKKG2IAS-AZZ0aWqshZoRRTTFKqBBSG9pPLfe4CVnrj3Rr8l27A6clwqrsd7ixRfEdae7G3G998bG2Ietlsfd2epynJuBS5IPlfYumbELytfmMJ1l3Lmuufllt7tbehdBFi294_-BvO7nmS</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Gravier, E.</creator><creator>Brochard, F.</creator><creator>Lesur, M.</creator><creator>Moritz, J.</creator><creator>Heuraux, S.</creator><creator>Genève, D.</creator><creator>Rouyer, T.</creator><creator>Del Sarto, D.</creator><creator>Faudot, E.</creator><creator>Ghizzo, A.</creator><creator>Lemoine, N.</creator><creator>Réveillé, T.</creator><creator>Urbanczyk, G.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7489-8843</orcidid><orcidid>https://orcid.org/0000-0001-7035-4574</orcidid><orcidid>https://orcid.org/0000-0001-6250-9230</orcidid><orcidid>https://orcid.org/0000-0001-9747-5616</orcidid><orcidid>https://orcid.org/0000-0002-4593-6270</orcidid><orcidid>https://orcid.org/0000-0002-8911-5546</orcidid><orcidid>https://orcid.org/0009-0009-0078-9527</orcidid><orcidid>https://orcid.org/0000-0002-4026-6802</orcidid><orcidid>https://orcid.org/0000-0002-6578-6046</orcidid><orcidid>https://orcid.org/0000-0003-3519-0070</orcidid><orcidid>https://orcid.org/0000-0003-3870-9229</orcidid><orcidid>https://orcid.org/0000-0003-1690-1391</orcidid></search><sort><creationdate>20241101</creationdate><title>Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE</title><author>Gravier, E. ; Brochard, F. ; Lesur, M. ; Moritz, J. ; Heuraux, S. ; Genève, D. ; Rouyer, T. ; Del Sarto, D. ; Faudot, E. ; Ghizzo, A. ; Lemoine, N. ; Réveillé, T. ; Urbanczyk, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-36358310f5149fa13ed803c96240f395d1da07a5254d7c9b84b9949473396abd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Argon plasma</topic><topic>Configurations</topic><topic>Cyclotrons</topic><topic>Helium plasma</topic><topic>Ion density (concentration)</topic><topic>Ion temperature</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic stability</topic><topic>Physics</topic><topic>Plasma</topic><topic>Radio frequency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravier, E.</creatorcontrib><creatorcontrib>Brochard, F.</creatorcontrib><creatorcontrib>Lesur, M.</creatorcontrib><creatorcontrib>Moritz, J.</creatorcontrib><creatorcontrib>Heuraux, S.</creatorcontrib><creatorcontrib>Genève, D.</creatorcontrib><creatorcontrib>Rouyer, T.</creatorcontrib><creatorcontrib>Del Sarto, D.</creatorcontrib><creatorcontrib>Faudot, E.</creatorcontrib><creatorcontrib>Ghizzo, A.</creatorcontrib><creatorcontrib>Lemoine, N.</creatorcontrib><creatorcontrib>Réveillé, T.</creatorcontrib><creatorcontrib>Urbanczyk, G.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravier, E.</au><au>Brochard, F.</au><au>Lesur, M.</au><au>Moritz, J.</au><au>Heuraux, S.</au><au>Genève, D.</au><au>Rouyer, T.</au><au>Del Sarto, D.</au><au>Faudot, E.</au><au>Ghizzo, A.</au><au>Lemoine, N.</au><au>Réveillé, T.</au><au>Urbanczyk, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE</atitle><jtitle>Physics of plasmas</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>31</volume><issue>11</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The objective of this work is to linearly investigate the plasma instabilities that will be observed in the linear SPEKTRE device, currently being assembled at Institut Jean Lamour. Two configurations are considered. In the first configuration, the magnetic field is set to 0.1 T with no ion temperature gradient (ITG), resulting in the observation of only collisional drift waves (DW). In the second configuration, the magnetic field is set to 0.44 T, and ions can be heated using an ion cyclotron radiofrequency heating (ICRH) system to establish an ITG. Under these conditions, two major types of instabilities may be observed: collisional DW and ITG instabilities. ITG instabilities become more unstable than DW when the ratio of the characteristic lengths of the ion temperature to ion density profiles η=ΩT*/Ωn*&gt;2.6. The observation of such a transition between the two types of instabilities will be possible on this machine using the ICRH system. The azimuthal mode number m of the most unstable mode is significantly larger for helium plasma compared to argon plasma. Furthermore, for the plasma parameters considered in both configurations, a fluid model is often sufficient to accurately describe DW, while a kinetic model is required to accurately describe ITG instabilities. There is a 30% difference between the ITG instability growth rates predicted by the fluid model and those predicted by the kinetic model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227546</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7489-8843</orcidid><orcidid>https://orcid.org/0000-0001-7035-4574</orcidid><orcidid>https://orcid.org/0000-0001-6250-9230</orcidid><orcidid>https://orcid.org/0000-0001-9747-5616</orcidid><orcidid>https://orcid.org/0000-0002-4593-6270</orcidid><orcidid>https://orcid.org/0000-0002-8911-5546</orcidid><orcidid>https://orcid.org/0009-0009-0078-9527</orcidid><orcidid>https://orcid.org/0000-0002-4026-6802</orcidid><orcidid>https://orcid.org/0000-0002-6578-6046</orcidid><orcidid>https://orcid.org/0000-0003-3519-0070</orcidid><orcidid>https://orcid.org/0000-0003-3870-9229</orcidid><orcidid>https://orcid.org/0000-0003-1690-1391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-11, Vol.31 (11)
issn 1070-664X
1089-7674
language eng
recordid cdi_hal_primary_oai_HAL_hal_04733195v1
source Alma/SFX Local Collection
subjects Argon plasma
Configurations
Cyclotrons
Helium plasma
Ion density (concentration)
Ion temperature
Magnetic fields
Magnetohydrodynamic stability
Physics
Plasma
Radio frequency
title Drift waves and ion temperature gradient instabilities in the large linear device SPEKTRE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drift%20waves%20and%20ion%20temperature%20gradient%20instabilities%20in%20the%20large%20linear%20device%20SPEKTRE&rft.jtitle=Physics%20of%20plasmas&rft.au=Gravier,%20E.&rft.date=2024-11-01&rft.volume=31&rft.issue=11&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0227546&rft_dat=%3Cproquest_hal_p%3E3125768618%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125768618&rft_id=info:pmid/&rfr_iscdi=true