The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion

Zinc and Cd isotope compositions are presented for a comprehensive suite of terrestrial rocks to constrain the extent of Zn and Cd isotope fractionation during igneous processes and better define the δ66Zn and δ114Cd values of the silicate Earth (the δ values denote per mille deviations of 66Zn/64Zn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2022-12, Vol.338, p.165-180
Hauptverfasser: Pickard, Harvey, Palk, Emeliana, Schönbächler, Maria, Moore, Rebekah E.T., Coles, Barry J., Kreissig, Katharina, Nilsson-Kerr, Katrina, Hammond, Samantha J., Takazawa, Eiichi, Hémond, Christophe, Tropper, Peter, Barfod, Dan N., Rehkämper, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue
container_start_page 165
container_title Geochimica et cosmochimica acta
container_volume 338
creator Pickard, Harvey
Palk, Emeliana
Schönbächler, Maria
Moore, Rebekah E.T.
Coles, Barry J.
Kreissig, Katharina
Nilsson-Kerr, Katrina
Hammond, Samantha J.
Takazawa, Eiichi
Hémond, Christophe
Tropper, Peter
Barfod, Dan N.
Rehkämper, Mark
description Zinc and Cd isotope compositions are presented for a comprehensive suite of terrestrial rocks to constrain the extent of Zn and Cd isotope fractionation during igneous processes and better define the δ66Zn and δ114Cd values of the silicate Earth (the δ values denote per mille deviations of 66Zn/64Zn from JMC Lyon Zn and of 114Cd/110Cd from NIST SRM 3108 Cd). Analyses of spinel lherzolites provide a bulk silicate Earth (BSE) δ114CdBSE value of –0.06 ± 0.03 ‰ (2SD). For Zn, the peridotite data of the current and previous studies define a mean δ66ZnBSE = 0.20 ± 0.05 ‰ (2SD). Komatiite analyses of this and published investigations yield similar mean values, which suggests that the Zn and Cd isotope compositions of the mantle remained fairly constant since the Archean. Data for loess provide upper continental crust compositions of δ114Cd = 0.03 ± 0.10 ‰ and δ66Zn = 0.23 ± 0.07 ‰. The Zn isotope and abundance data for peridotites and oceanic basalts are in accord with the previous observation of a mantle array, with basalts having higher Zn concentrations and δ66Zn values than the peridotites. To a first order, this reflects slightly incompatible behaviour of Zn during mantle melting and melt differentiation with associated enrichment of heavy Zn isotopes in the melt phase. Cadmium is marginally more incompatible than Zn during igneous processes and the oceanic basalts also display a minor enrichment of heavy Cd isotopes relative to peridotites. However, secondary processes produce significant Cd isotope variability in both mantle melts and peridotites, obscuring the primary igneous array. The δ66ZnBSE estimates of this and previous studies resemble the Zn isotope compositions of CV and CO carbonaceous and some enstatite chondrites. In contrast, the BSE has a lower δ114CdBSE value than enstatite and carbonaceous chondrites. This implies that the Cd isotope composition of the BSE was either fractionated during accretion or that Earth’s Cd inventory was not exclusively acquired from material related to carbonaceous and enstatite chondrites. Importantly, delivery of Zn and Cd to the BSE solely by CI and CM chondrites is not in accord with the meteorite and terrestrial stable isotope data of these elements.
doi_str_mv 10.1016/j.gca.2022.09.041
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04731701v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703722005282</els_id><sourcerecordid>oai_HAL_hal_04731701v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-6983af93fe7ddb3d75cdec7c743e82ef08354e226395fda8ae192d270e4a416a3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNskD5CbrjnYGUm2ZZNTWLZJYKGX9Cwm0jirxbYWSV1oT32HvmGeJHY29NjTwD_fNzA_Y1cCSgGiudmXLxZLCVKW0JVQiU9sJVoti65W6jNbwQwVGpT-wr6mtAcAXdewYulpR9yiG_3PkePk-G8_We5TyOEwL8J4CMlnH6bEQ8_zDCc_eIuZ-AZj3vHXP3_543h4z96xPkSeKUZKOXoc-DEM82YgjtZGWpgLdtbjkOjyY56zH982T-uHYvv9_nF9ty2walQumq5V2HeqJ-3cs3K6to6strpS1ErqoVV1RVI2qqt7hy2S6KSTGqjCSjSoztn16e4OB3OIfsT4ywT05uFua5YMKq2EBnEUMytOrI0hpUj9P0GAWRo2ezM3bJaGDXSzuji3J4fmJ46eoknW02TJ-Ug2Gxf8f-w3y-yGVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion</title><source>Elsevier ScienceDirect Journals</source><creator>Pickard, Harvey ; Palk, Emeliana ; Schönbächler, Maria ; Moore, Rebekah E.T. ; Coles, Barry J. ; Kreissig, Katharina ; Nilsson-Kerr, Katrina ; Hammond, Samantha J. ; Takazawa, Eiichi ; Hémond, Christophe ; Tropper, Peter ; Barfod, Dan N. ; Rehkämper, Mark</creator><creatorcontrib>Pickard, Harvey ; Palk, Emeliana ; Schönbächler, Maria ; Moore, Rebekah E.T. ; Coles, Barry J. ; Kreissig, Katharina ; Nilsson-Kerr, Katrina ; Hammond, Samantha J. ; Takazawa, Eiichi ; Hémond, Christophe ; Tropper, Peter ; Barfod, Dan N. ; Rehkämper, Mark</creatorcontrib><description>Zinc and Cd isotope compositions are presented for a comprehensive suite of terrestrial rocks to constrain the extent of Zn and Cd isotope fractionation during igneous processes and better define the δ66Zn and δ114Cd values of the silicate Earth (the δ values denote per mille deviations of 66Zn/64Zn from JMC Lyon Zn and of 114Cd/110Cd from NIST SRM 3108 Cd). Analyses of spinel lherzolites provide a bulk silicate Earth (BSE) δ114CdBSE value of –0.06 ± 0.03 ‰ (2SD). For Zn, the peridotite data of the current and previous studies define a mean δ66ZnBSE = 0.20 ± 0.05 ‰ (2SD). Komatiite analyses of this and published investigations yield similar mean values, which suggests that the Zn and Cd isotope compositions of the mantle remained fairly constant since the Archean. Data for loess provide upper continental crust compositions of δ114Cd = 0.03 ± 0.10 ‰ and δ66Zn = 0.23 ± 0.07 ‰. The Zn isotope and abundance data for peridotites and oceanic basalts are in accord with the previous observation of a mantle array, with basalts having higher Zn concentrations and δ66Zn values than the peridotites. To a first order, this reflects slightly incompatible behaviour of Zn during mantle melting and melt differentiation with associated enrichment of heavy Zn isotopes in the melt phase. Cadmium is marginally more incompatible than Zn during igneous processes and the oceanic basalts also display a minor enrichment of heavy Cd isotopes relative to peridotites. However, secondary processes produce significant Cd isotope variability in both mantle melts and peridotites, obscuring the primary igneous array. The δ66ZnBSE estimates of this and previous studies resemble the Zn isotope compositions of CV and CO carbonaceous and some enstatite chondrites. In contrast, the BSE has a lower δ114CdBSE value than enstatite and carbonaceous chondrites. This implies that the Cd isotope composition of the BSE was either fractionated during accretion or that Earth’s Cd inventory was not exclusively acquired from material related to carbonaceous and enstatite chondrites. Importantly, delivery of Zn and Cd to the BSE solely by CI and CM chondrites is not in accord with the meteorite and terrestrial stable isotope data of these elements.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2022.09.041</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bulk silicate Earth ; Cadmium ; Chemical Physics ; Geophysics ; Isotope geochemistry ; Physics ; Silicate Earth ; Stable isotopes ; Volatile elements ; Zinc</subject><ispartof>Geochimica et cosmochimica acta, 2022-12, Vol.338, p.165-180</ispartof><rights>2022 The Author(s)</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-6983af93fe7ddb3d75cdec7c743e82ef08354e226395fda8ae192d270e4a416a3</citedby><cites>FETCH-LOGICAL-a463t-6983af93fe7ddb3d75cdec7c743e82ef08354e226395fda8ae192d270e4a416a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703722005282$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04731701$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pickard, Harvey</creatorcontrib><creatorcontrib>Palk, Emeliana</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Moore, Rebekah E.T.</creatorcontrib><creatorcontrib>Coles, Barry J.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Nilsson-Kerr, Katrina</creatorcontrib><creatorcontrib>Hammond, Samantha J.</creatorcontrib><creatorcontrib>Takazawa, Eiichi</creatorcontrib><creatorcontrib>Hémond, Christophe</creatorcontrib><creatorcontrib>Tropper, Peter</creatorcontrib><creatorcontrib>Barfod, Dan N.</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><title>The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion</title><title>Geochimica et cosmochimica acta</title><description>Zinc and Cd isotope compositions are presented for a comprehensive suite of terrestrial rocks to constrain the extent of Zn and Cd isotope fractionation during igneous processes and better define the δ66Zn and δ114Cd values of the silicate Earth (the δ values denote per mille deviations of 66Zn/64Zn from JMC Lyon Zn and of 114Cd/110Cd from NIST SRM 3108 Cd). Analyses of spinel lherzolites provide a bulk silicate Earth (BSE) δ114CdBSE value of –0.06 ± 0.03 ‰ (2SD). For Zn, the peridotite data of the current and previous studies define a mean δ66ZnBSE = 0.20 ± 0.05 ‰ (2SD). Komatiite analyses of this and published investigations yield similar mean values, which suggests that the Zn and Cd isotope compositions of the mantle remained fairly constant since the Archean. Data for loess provide upper continental crust compositions of δ114Cd = 0.03 ± 0.10 ‰ and δ66Zn = 0.23 ± 0.07 ‰. The Zn isotope and abundance data for peridotites and oceanic basalts are in accord with the previous observation of a mantle array, with basalts having higher Zn concentrations and δ66Zn values than the peridotites. To a first order, this reflects slightly incompatible behaviour of Zn during mantle melting and melt differentiation with associated enrichment of heavy Zn isotopes in the melt phase. Cadmium is marginally more incompatible than Zn during igneous processes and the oceanic basalts also display a minor enrichment of heavy Cd isotopes relative to peridotites. However, secondary processes produce significant Cd isotope variability in both mantle melts and peridotites, obscuring the primary igneous array. The δ66ZnBSE estimates of this and previous studies resemble the Zn isotope compositions of CV and CO carbonaceous and some enstatite chondrites. In contrast, the BSE has a lower δ114CdBSE value than enstatite and carbonaceous chondrites. This implies that the Cd isotope composition of the BSE was either fractionated during accretion or that Earth’s Cd inventory was not exclusively acquired from material related to carbonaceous and enstatite chondrites. Importantly, delivery of Zn and Cd to the BSE solely by CI and CM chondrites is not in accord with the meteorite and terrestrial stable isotope data of these elements.</description><subject>Bulk silicate Earth</subject><subject>Cadmium</subject><subject>Chemical Physics</subject><subject>Geophysics</subject><subject>Isotope geochemistry</subject><subject>Physics</subject><subject>Silicate Earth</subject><subject>Stable isotopes</subject><subject>Volatile elements</subject><subject>Zinc</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNskD5CbrjnYGUm2ZZNTWLZJYKGX9Cwm0jirxbYWSV1oT32HvmGeJHY29NjTwD_fNzA_Y1cCSgGiudmXLxZLCVKW0JVQiU9sJVoti65W6jNbwQwVGpT-wr6mtAcAXdewYulpR9yiG_3PkePk-G8_We5TyOEwL8J4CMlnH6bEQ8_zDCc_eIuZ-AZj3vHXP3_543h4z96xPkSeKUZKOXoc-DEM82YgjtZGWpgLdtbjkOjyY56zH982T-uHYvv9_nF9ty2walQumq5V2HeqJ-3cs3K6to6strpS1ErqoVV1RVI2qqt7hy2S6KSTGqjCSjSoztn16e4OB3OIfsT4ywT05uFua5YMKq2EBnEUMytOrI0hpUj9P0GAWRo2ezM3bJaGDXSzuji3J4fmJ46eoknW02TJ-Ug2Gxf8f-w3y-yGVQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pickard, Harvey</creator><creator>Palk, Emeliana</creator><creator>Schönbächler, Maria</creator><creator>Moore, Rebekah E.T.</creator><creator>Coles, Barry J.</creator><creator>Kreissig, Katharina</creator><creator>Nilsson-Kerr, Katrina</creator><creator>Hammond, Samantha J.</creator><creator>Takazawa, Eiichi</creator><creator>Hémond, Christophe</creator><creator>Tropper, Peter</creator><creator>Barfod, Dan N.</creator><creator>Rehkämper, Mark</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20221201</creationdate><title>The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion</title><author>Pickard, Harvey ; Palk, Emeliana ; Schönbächler, Maria ; Moore, Rebekah E.T. ; Coles, Barry J. ; Kreissig, Katharina ; Nilsson-Kerr, Katrina ; Hammond, Samantha J. ; Takazawa, Eiichi ; Hémond, Christophe ; Tropper, Peter ; Barfod, Dan N. ; Rehkämper, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-6983af93fe7ddb3d75cdec7c743e82ef08354e226395fda8ae192d270e4a416a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk silicate Earth</topic><topic>Cadmium</topic><topic>Chemical Physics</topic><topic>Geophysics</topic><topic>Isotope geochemistry</topic><topic>Physics</topic><topic>Silicate Earth</topic><topic>Stable isotopes</topic><topic>Volatile elements</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pickard, Harvey</creatorcontrib><creatorcontrib>Palk, Emeliana</creatorcontrib><creatorcontrib>Schönbächler, Maria</creatorcontrib><creatorcontrib>Moore, Rebekah E.T.</creatorcontrib><creatorcontrib>Coles, Barry J.</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Nilsson-Kerr, Katrina</creatorcontrib><creatorcontrib>Hammond, Samantha J.</creatorcontrib><creatorcontrib>Takazawa, Eiichi</creatorcontrib><creatorcontrib>Hémond, Christophe</creatorcontrib><creatorcontrib>Tropper, Peter</creatorcontrib><creatorcontrib>Barfod, Dan N.</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pickard, Harvey</au><au>Palk, Emeliana</au><au>Schönbächler, Maria</au><au>Moore, Rebekah E.T.</au><au>Coles, Barry J.</au><au>Kreissig, Katharina</au><au>Nilsson-Kerr, Katrina</au><au>Hammond, Samantha J.</au><au>Takazawa, Eiichi</au><au>Hémond, Christophe</au><au>Tropper, Peter</au><au>Barfod, Dan N.</au><au>Rehkämper, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>338</volume><spage>165</spage><epage>180</epage><pages>165-180</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Zinc and Cd isotope compositions are presented for a comprehensive suite of terrestrial rocks to constrain the extent of Zn and Cd isotope fractionation during igneous processes and better define the δ66Zn and δ114Cd values of the silicate Earth (the δ values denote per mille deviations of 66Zn/64Zn from JMC Lyon Zn and of 114Cd/110Cd from NIST SRM 3108 Cd). Analyses of spinel lherzolites provide a bulk silicate Earth (BSE) δ114CdBSE value of –0.06 ± 0.03 ‰ (2SD). For Zn, the peridotite data of the current and previous studies define a mean δ66ZnBSE = 0.20 ± 0.05 ‰ (2SD). Komatiite analyses of this and published investigations yield similar mean values, which suggests that the Zn and Cd isotope compositions of the mantle remained fairly constant since the Archean. Data for loess provide upper continental crust compositions of δ114Cd = 0.03 ± 0.10 ‰ and δ66Zn = 0.23 ± 0.07 ‰. The Zn isotope and abundance data for peridotites and oceanic basalts are in accord with the previous observation of a mantle array, with basalts having higher Zn concentrations and δ66Zn values than the peridotites. To a first order, this reflects slightly incompatible behaviour of Zn during mantle melting and melt differentiation with associated enrichment of heavy Zn isotopes in the melt phase. Cadmium is marginally more incompatible than Zn during igneous processes and the oceanic basalts also display a minor enrichment of heavy Cd isotopes relative to peridotites. However, secondary processes produce significant Cd isotope variability in both mantle melts and peridotites, obscuring the primary igneous array. The δ66ZnBSE estimates of this and previous studies resemble the Zn isotope compositions of CV and CO carbonaceous and some enstatite chondrites. In contrast, the BSE has a lower δ114CdBSE value than enstatite and carbonaceous chondrites. This implies that the Cd isotope composition of the BSE was either fractionated during accretion or that Earth’s Cd inventory was not exclusively acquired from material related to carbonaceous and enstatite chondrites. Importantly, delivery of Zn and Cd to the BSE solely by CI and CM chondrites is not in accord with the meteorite and terrestrial stable isotope data of these elements.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2022.09.041</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2022-12, Vol.338, p.165-180
issn 0016-7037
1872-9533
language eng
recordid cdi_hal_primary_oai_HAL_hal_04731701v1
source Elsevier ScienceDirect Journals
subjects Bulk silicate Earth
Cadmium
Chemical Physics
Geophysics
Isotope geochemistry
Physics
Silicate Earth
Stable isotopes
Volatile elements
Zinc
title The cadmium and zinc isotope compositions of the silicate Earth – Implications for terrestrial volatile accretion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cadmium%20and%20zinc%20isotope%20compositions%20of%20the%20silicate%20Earth%20%E2%80%93%20Implications%20for%20terrestrial%20volatile%20accretion&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Pickard,%20Harvey&rft.date=2022-12-01&rft.volume=338&rft.spage=165&rft.epage=180&rft.pages=165-180&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2022.09.041&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04731701v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0016703722005282&rfr_iscdi=true