High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon
All‐solid‐state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a pra...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-07, Vol.13 (26), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Oh, Jin An Sam Deysher, Grayson Ridley, Phillip Chen, Yu‐Ting Cheng, Diyi Cronk, Ashley Ham, So‐Yeon Tan, Darren H.S. Jang, Jihyun Nguyen, Long Hoang Bao Meng, Ying Shirley |
description | All‐solid‐state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a practical large‐scale sodium‐ion battery. However, the energy density of the battery utilizing this anode material is hampered by its low initial Coulombic efficiency (ICE). Herein, two strategies, namely i) additional pyrolysis and ii) presodiation by thermal decomposition of NaBH4, are explored to improve the ICE of pristine HC. Raman spectroscopy, X‐ray photoelectron spectroscopy, and electrochemical characterizations elucidate that the thermal treatment increases the Csp2 content in the HC structure, while the presodiation supplies the sodium to occupy the intrinsic irreversible sites. Consequently, presodiated HC exhibits an outstanding ICE (>99%) compared to the thermally treated (90%) or pristine HC (83%) in half‐cell configurations. More importantly, AS3iB using presodiated HC and NaCrO2 as the anode and cathode, respectively, exhibits a high ICE of 92% and an initial discharge energy density of 294Whkgcathode−1$294\ {\rm Wh}\ {\rm{kg}}_{{\rm{cathode}}}^{ - 1}$.
The oxygen groups in hard carbon are the intrinsic irreversible sodium storage sites leading to loss of sodium inventory which negatively impacts the energy density of batteries. Hard carbon is presodiated by decomposing sodium‐containing precursors thermally. This supplemental sodium populates the irreversible sites improving the initial Coulombic efficiency and the energy density of all‐solid‐state sodium ion batteries. |
doi_str_mv | 10.1002/aenm.202300776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04730412v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836973297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3916-daaa230009b4839370570ab4991706ae87d8f0a57f8b6560895bcf2ec4dd47b13</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOOaungOePHS-NGnTHOeYbjB1MD2H1zXdMrpG007ZzY_gZ_ST2FKZRwPhvTx-_z8vf0IuGQwZQHiDptwNQwg5gJTxCemxmIkgTgScHnsenpNBVW2hOUIx4LxH1lO73nx_fi2Mz53f2XJNR0XRDJausFlba6wNXbrM7nfNc-ZKeot1bbw1FZ2UmBYmo-mB1htDF95UDYi1bSiX0yn6jI7Rp668IGc5FpUZ_NY-ebmbPI-nwfzpfjYezYMVVywOMkRs_wAqFQlXXEIkAVOhFJMQo0lkluSAkcyTNI5iSFSUrvLQrESWCZky3ifXne8GC_3q7Q79QTu0ejqa63YGQnIQLHxv2auOffXubW-qWm_d3pfNejpMeKwkD5vbJ8OOWnlXVd7kR1sGus1et9nrY_aNQHWCD1uYwz-0Hk0eH_60P3YYiio</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836973297</pqid></control><display><type>article</type><title>High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Oh, Jin An Sam ; Deysher, Grayson ; Ridley, Phillip ; Chen, Yu‐Ting ; Cheng, Diyi ; Cronk, Ashley ; Ham, So‐Yeon ; Tan, Darren H.S. ; Jang, Jihyun ; Nguyen, Long Hoang Bao ; Meng, Ying Shirley</creator><creatorcontrib>Oh, Jin An Sam ; Deysher, Grayson ; Ridley, Phillip ; Chen, Yu‐Ting ; Cheng, Diyi ; Cronk, Ashley ; Ham, So‐Yeon ; Tan, Darren H.S. ; Jang, Jihyun ; Nguyen, Long Hoang Bao ; Meng, Ying Shirley</creatorcontrib><description>All‐solid‐state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a practical large‐scale sodium‐ion battery. However, the energy density of the battery utilizing this anode material is hampered by its low initial Coulombic efficiency (ICE). Herein, two strategies, namely i) additional pyrolysis and ii) presodiation by thermal decomposition of NaBH4, are explored to improve the ICE of pristine HC. Raman spectroscopy, X‐ray photoelectron spectroscopy, and electrochemical characterizations elucidate that the thermal treatment increases the Csp2 content in the HC structure, while the presodiation supplies the sodium to occupy the intrinsic irreversible sites. Consequently, presodiated HC exhibits an outstanding ICE (>99%) compared to the thermally treated (90%) or pristine HC (83%) in half‐cell configurations. More importantly, AS3iB using presodiated HC and NaCrO2 as the anode and cathode, respectively, exhibits a high ICE of 92% and an initial discharge energy density of 294Whkgcathode−1$294\ {\rm Wh}\ {\rm{kg}}_{{\rm{cathode}}}^{ - 1}$.
The oxygen groups in hard carbon are the intrinsic irreversible sodium storage sites leading to loss of sodium inventory which negatively impacts the energy density of batteries. Hard carbon is presodiated by decomposing sodium‐containing precursors thermally. This supplemental sodium populates the irreversible sites improving the initial Coulombic efficiency and the energy density of all‐solid‐state sodium ion batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300776</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state batteries ; anode materials ; Anodes ; Carbon ; Cathodes ; Chemical Sciences ; Electrode materials ; Energy storage ; hard carbon ; Heat treatment ; Photoelectrons ; presodiation ; Pyrolysis ; Raman spectroscopy ; Sodium ; sodium batteries ; Sodium chromites ; Sodium-ion batteries ; Spectrum analysis ; Storage systems ; Thermal decomposition</subject><ispartof>Advanced energy materials, 2023-07, Vol.13 (26), p.n/a</ispartof><rights>2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3916-daaa230009b4839370570ab4991706ae87d8f0a57f8b6560895bcf2ec4dd47b13</citedby><cites>FETCH-LOGICAL-c3916-daaa230009b4839370570ab4991706ae87d8f0a57f8b6560895bcf2ec4dd47b13</cites><orcidid>0000-0001-9336-234X ; 0000-0001-8936-8845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300776$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300776$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04730412$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Jin An Sam</creatorcontrib><creatorcontrib>Deysher, Grayson</creatorcontrib><creatorcontrib>Ridley, Phillip</creatorcontrib><creatorcontrib>Chen, Yu‐Ting</creatorcontrib><creatorcontrib>Cheng, Diyi</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Ham, So‐Yeon</creatorcontrib><creatorcontrib>Tan, Darren H.S.</creatorcontrib><creatorcontrib>Jang, Jihyun</creatorcontrib><creatorcontrib>Nguyen, Long Hoang Bao</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><title>High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon</title><title>Advanced energy materials</title><description>All‐solid‐state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a practical large‐scale sodium‐ion battery. However, the energy density of the battery utilizing this anode material is hampered by its low initial Coulombic efficiency (ICE). Herein, two strategies, namely i) additional pyrolysis and ii) presodiation by thermal decomposition of NaBH4, are explored to improve the ICE of pristine HC. Raman spectroscopy, X‐ray photoelectron spectroscopy, and electrochemical characterizations elucidate that the thermal treatment increases the Csp2 content in the HC structure, while the presodiation supplies the sodium to occupy the intrinsic irreversible sites. Consequently, presodiated HC exhibits an outstanding ICE (>99%) compared to the thermally treated (90%) or pristine HC (83%) in half‐cell configurations. More importantly, AS3iB using presodiated HC and NaCrO2 as the anode and cathode, respectively, exhibits a high ICE of 92% and an initial discharge energy density of 294Whkgcathode−1$294\ {\rm Wh}\ {\rm{kg}}_{{\rm{cathode}}}^{ - 1}$.
The oxygen groups in hard carbon are the intrinsic irreversible sodium storage sites leading to loss of sodium inventory which negatively impacts the energy density of batteries. Hard carbon is presodiated by decomposing sodium‐containing precursors thermally. This supplemental sodium populates the irreversible sites improving the initial Coulombic efficiency and the energy density of all‐solid‐state sodium ion batteries.</description><subject>all‐solid‐state batteries</subject><subject>anode materials</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical Sciences</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>hard carbon</subject><subject>Heat treatment</subject><subject>Photoelectrons</subject><subject>presodiation</subject><subject>Pyrolysis</subject><subject>Raman spectroscopy</subject><subject>Sodium</subject><subject>sodium batteries</subject><subject>Sodium chromites</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Storage systems</subject><subject>Thermal decomposition</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFLwzAUx4MoOOaungOePHS-NGnTHOeYbjB1MD2H1zXdMrpG007ZzY_gZ_ST2FKZRwPhvTx-_z8vf0IuGQwZQHiDptwNQwg5gJTxCemxmIkgTgScHnsenpNBVW2hOUIx4LxH1lO73nx_fi2Mz53f2XJNR0XRDJausFlba6wNXbrM7nfNc-ZKeot1bbw1FZ2UmBYmo-mB1htDF95UDYi1bSiX0yn6jI7Rp668IGc5FpUZ_NY-ebmbPI-nwfzpfjYezYMVVywOMkRs_wAqFQlXXEIkAVOhFJMQo0lkluSAkcyTNI5iSFSUrvLQrESWCZky3ifXne8GC_3q7Q79QTu0ejqa63YGQnIQLHxv2auOffXubW-qWm_d3pfNejpMeKwkD5vbJ8OOWnlXVd7kR1sGus1et9nrY_aNQHWCD1uYwz-0Hk0eH_60P3YYiio</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Oh, Jin An Sam</creator><creator>Deysher, Grayson</creator><creator>Ridley, Phillip</creator><creator>Chen, Yu‐Ting</creator><creator>Cheng, Diyi</creator><creator>Cronk, Ashley</creator><creator>Ham, So‐Yeon</creator><creator>Tan, Darren H.S.</creator><creator>Jang, Jihyun</creator><creator>Nguyen, Long Hoang Bao</creator><creator>Meng, Ying Shirley</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9336-234X</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid></search><sort><creationdate>20230701</creationdate><title>High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon</title><author>Oh, Jin An Sam ; Deysher, Grayson ; Ridley, Phillip ; Chen, Yu‐Ting ; Cheng, Diyi ; Cronk, Ashley ; Ham, So‐Yeon ; Tan, Darren H.S. ; Jang, Jihyun ; Nguyen, Long Hoang Bao ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3916-daaa230009b4839370570ab4991706ae87d8f0a57f8b6560895bcf2ec4dd47b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>all‐solid‐state batteries</topic><topic>anode materials</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical Sciences</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>hard carbon</topic><topic>Heat treatment</topic><topic>Photoelectrons</topic><topic>presodiation</topic><topic>Pyrolysis</topic><topic>Raman spectroscopy</topic><topic>Sodium</topic><topic>sodium batteries</topic><topic>Sodium chromites</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Storage systems</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Jin An Sam</creatorcontrib><creatorcontrib>Deysher, Grayson</creatorcontrib><creatorcontrib>Ridley, Phillip</creatorcontrib><creatorcontrib>Chen, Yu‐Ting</creatorcontrib><creatorcontrib>Cheng, Diyi</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Ham, So‐Yeon</creatorcontrib><creatorcontrib>Tan, Darren H.S.</creatorcontrib><creatorcontrib>Jang, Jihyun</creatorcontrib><creatorcontrib>Nguyen, Long Hoang Bao</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Jin An Sam</au><au>Deysher, Grayson</au><au>Ridley, Phillip</au><au>Chen, Yu‐Ting</au><au>Cheng, Diyi</au><au>Cronk, Ashley</au><au>Ham, So‐Yeon</au><au>Tan, Darren H.S.</au><au>Jang, Jihyun</au><au>Nguyen, Long Hoang Bao</au><au>Meng, Ying Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon</atitle><jtitle>Advanced energy materials</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>26</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>All‐solid‐state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a practical large‐scale sodium‐ion battery. However, the energy density of the battery utilizing this anode material is hampered by its low initial Coulombic efficiency (ICE). Herein, two strategies, namely i) additional pyrolysis and ii) presodiation by thermal decomposition of NaBH4, are explored to improve the ICE of pristine HC. Raman spectroscopy, X‐ray photoelectron spectroscopy, and electrochemical characterizations elucidate that the thermal treatment increases the Csp2 content in the HC structure, while the presodiation supplies the sodium to occupy the intrinsic irreversible sites. Consequently, presodiated HC exhibits an outstanding ICE (>99%) compared to the thermally treated (90%) or pristine HC (83%) in half‐cell configurations. More importantly, AS3iB using presodiated HC and NaCrO2 as the anode and cathode, respectively, exhibits a high ICE of 92% and an initial discharge energy density of 294Whkgcathode−1$294\ {\rm Wh}\ {\rm{kg}}_{{\rm{cathode}}}^{ - 1}$.
The oxygen groups in hard carbon are the intrinsic irreversible sodium storage sites leading to loss of sodium inventory which negatively impacts the energy density of batteries. Hard carbon is presodiated by decomposing sodium‐containing precursors thermally. This supplemental sodium populates the irreversible sites improving the initial Coulombic efficiency and the energy density of all‐solid‐state sodium ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300776</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9336-234X</orcidid><orcidid>https://orcid.org/0000-0001-8936-8845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-07, Vol.13 (26), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04730412v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | all‐solid‐state batteries anode materials Anodes Carbon Cathodes Chemical Sciences Electrode materials Energy storage hard carbon Heat treatment Photoelectrons presodiation Pyrolysis Raman spectroscopy Sodium sodium batteries Sodium chromites Sodium-ion batteries Spectrum analysis Storage systems Thermal decomposition |
title | High‐Performing All‐Solid‐State Sodium‐Ion Batteries Enabled by the Presodiation of Hard Carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performing%20All%E2%80%90Solid%E2%80%90State%20Sodium%E2%80%90Ion%20Batteries%20Enabled%20by%20the%20Presodiation%20of%20Hard%20Carbon&rft.jtitle=Advanced%20energy%20materials&rft.au=Oh,%20Jin%20An%20Sam&rft.date=2023-07-01&rft.volume=13&rft.issue=26&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300776&rft_dat=%3Cproquest_hal_p%3E2836973297%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836973297&rft_id=info:pmid/&rfr_iscdi=true |