Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators

Due to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-04, Vol.26 (15), p.11469-11481
Hauptverfasser: Bader, Frederik, Lauvergnat, David, Christiansen, Ove
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11481
container_issue 15
container_start_page 11469
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Bader, Frederik
Lauvergnat, David
Christiansen, Ove
description Due to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical coordinate systems. In particular, we assess the operators with respect to accuracy in vibrationally correlated calculations and their effect on potential energy surface construction with the adaptive density guided approach. Our results show that the -mode expansion-based operator variants are reliable and systematically improvable approximations of the full kinetic energy operator. Moreover, we introduce a workflow to generate the -mode expanded kinetic energy operators on-the-fly within the adaptive density guided approach. This scheme can be applied in studies of species and coordinate systems, for which an analytical form of the kinetic energy operator is not available.
doi_str_mv 10.1039/d4cp00423j
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04730195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039715718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-10590597fef98136da87656f147d822097bfdbce2fd59ff5c416836097d775a93</originalsourceid><addsrcrecordid>eNpd0UFvFCEUB3BiNLZWL34AQ-KlmkyFAQY4Nmu1NpvoQc8TBh6VlR1GmGm63162W_fQhATy3i__vPAQekvJBSVMf3LcToTwlm2eoVPKO9Zoovjz41t2J-hVKRtCCBWUvUQnTAneyVaeIn_lfbABxhnfhSGbOaTRxLjDNuUM0czgsDXRLvGhVfBSwniLR9xskwMM95MZS200gymV_gkjzMFiGCHf7nCaoEamXF6jF97EAm8e7zP068vVz9V1s_7-9dvqct1YRtTcUCJ0PdKD14qyzhklO9F5yqVTbUu0HLwbLLTeCe29sJx2inW17qQURrMz9OGQ-9vEfspha_KuTyb015frfl8jXDJCtbij1Z4f7JTT3wXK3G9DsRCjGSEtpa-OE0qI2se-f0I3acn1o_aKaUmFpKqqjwdlcyolgz9OQEm_31T_ma9-PGzqpuJ3j5HLsAV3pP9Xw_4BqgONjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039715718</pqid></control><display><type>article</type><title>Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bader, Frederik ; Lauvergnat, David ; Christiansen, Ove</creator><creatorcontrib>Bader, Frederik ; Lauvergnat, David ; Christiansen, Ove</creatorcontrib><description>Due to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical coordinate systems. In particular, we assess the operators with respect to accuracy in vibrationally correlated calculations and their effect on potential energy surface construction with the adaptive density guided approach. Our results show that the -mode expansion-based operator variants are reliable and systematically improvable approximations of the full kinetic energy operator. Moreover, we introduce a workflow to generate the -mode expanded kinetic energy operators on-the-fly within the adaptive density guided approach. This scheme can be applied in studies of species and coordinate systems, for which an analytical form of the kinetic energy operator is not available.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00423j</identifier><identifier>PMID: 38546727</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical Sciences ; Coordinates ; Density ; Kinetic energy ; Mathematical analysis ; Operators ; or physical chemistry ; Potential energy ; Quantum chemistry ; Theoretical and ; Workflow</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (15), p.11469-11481</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-10590597fef98136da87656f147d822097bfdbce2fd59ff5c416836097d775a93</cites><orcidid>0000-0001-9215-571X ; 0000-0001-8498-0517 ; 0000-0002-8258-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38546727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04730195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bader, Frederik</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><creatorcontrib>Christiansen, Ove</creatorcontrib><title>Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Due to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical coordinate systems. In particular, we assess the operators with respect to accuracy in vibrationally correlated calculations and their effect on potential energy surface construction with the adaptive density guided approach. Our results show that the -mode expansion-based operator variants are reliable and systematically improvable approximations of the full kinetic energy operator. Moreover, we introduce a workflow to generate the -mode expanded kinetic energy operators on-the-fly within the adaptive density guided approach. This scheme can be applied in studies of species and coordinate systems, for which an analytical form of the kinetic energy operator is not available.</description><subject>Chemical Sciences</subject><subject>Coordinates</subject><subject>Density</subject><subject>Kinetic energy</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>or physical chemistry</subject><subject>Potential energy</subject><subject>Quantum chemistry</subject><subject>Theoretical and</subject><subject>Workflow</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0UFvFCEUB3BiNLZWL34AQ-KlmkyFAQY4Nmu1NpvoQc8TBh6VlR1GmGm63162W_fQhATy3i__vPAQekvJBSVMf3LcToTwlm2eoVPKO9Zoovjz41t2J-hVKRtCCBWUvUQnTAneyVaeIn_lfbABxhnfhSGbOaTRxLjDNuUM0czgsDXRLvGhVfBSwniLR9xskwMM95MZS200gymV_gkjzMFiGCHf7nCaoEamXF6jF97EAm8e7zP068vVz9V1s_7-9dvqct1YRtTcUCJ0PdKD14qyzhklO9F5yqVTbUu0HLwbLLTeCe29sJx2inW17qQURrMz9OGQ-9vEfspha_KuTyb015frfl8jXDJCtbij1Z4f7JTT3wXK3G9DsRCjGSEtpa-OE0qI2se-f0I3acn1o_aKaUmFpKqqjwdlcyolgz9OQEm_31T_ma9-PGzqpuJ3j5HLsAV3pP9Xw_4BqgONjA</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Bader, Frederik</creator><creator>Lauvergnat, David</creator><creator>Christiansen, Ove</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9215-571X</orcidid><orcidid>https://orcid.org/0000-0001-8498-0517</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid></search><sort><creationdate>20240417</creationdate><title>Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators</title><author>Bader, Frederik ; Lauvergnat, David ; Christiansen, Ove</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-10590597fef98136da87656f147d822097bfdbce2fd59ff5c416836097d775a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><topic>Coordinates</topic><topic>Density</topic><topic>Kinetic energy</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>or physical chemistry</topic><topic>Potential energy</topic><topic>Quantum chemistry</topic><topic>Theoretical and</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bader, Frederik</creatorcontrib><creatorcontrib>Lauvergnat, David</creatorcontrib><creatorcontrib>Christiansen, Ove</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bader, Frederik</au><au>Lauvergnat, David</au><au>Christiansen, Ove</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-04-17</date><risdate>2024</risdate><volume>26</volume><issue>15</issue><spage>11469</spage><epage>11481</epage><pages>11469-11481</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Due to its efficiency and flexibility, the -mode expansion is a frequently used tool for representing molecular potential energy surfaces in quantum chemical simulations. In this work, we investigate the performance of -mode expansion-based models of kinetic energy operators in general polyspherical coordinate systems. In particular, we assess the operators with respect to accuracy in vibrationally correlated calculations and their effect on potential energy surface construction with the adaptive density guided approach. Our results show that the -mode expansion-based operator variants are reliable and systematically improvable approximations of the full kinetic energy operator. Moreover, we introduce a workflow to generate the -mode expanded kinetic energy operators on-the-fly within the adaptive density guided approach. This scheme can be applied in studies of species and coordinate systems, for which an analytical form of the kinetic energy operator is not available.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38546727</pmid><doi>10.1039/d4cp00423j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9215-571X</orcidid><orcidid>https://orcid.org/0000-0001-8498-0517</orcidid><orcidid>https://orcid.org/0000-0002-8258-3531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (15), p.11469-11481
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_04730195v1
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemical Sciences
Coordinates
Density
Kinetic energy
Mathematical analysis
Operators
or physical chemistry
Potential energy
Quantum chemistry
Theoretical and
Workflow
title Efficient vibrationally correlated calculations using n -mode expansion-based kinetic energy operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20vibrationally%20correlated%20calculations%20using%20n%20-mode%20expansion-based%20kinetic%20energy%20operators&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Bader,%20Frederik&rft.date=2024-04-17&rft.volume=26&rft.issue=15&rft.spage=11469&rft.epage=11481&rft.pages=11469-11481&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00423j&rft_dat=%3Cproquest_hal_p%3E3039715718%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039715718&rft_id=info:pmid/38546727&rfr_iscdi=true