Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines
Abstract Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol,...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2024-05, Vol.17 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | ChemSusChem |
container_volume | 17 |
creator | Boulos, Joseph Goc, Firat Vandenbrouck, Tom Perret, Noémie Dhainaut, Jérémy Royer, Sébastien Rataboul, Franck |
description | Abstract Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %W x C/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W 2 C/AC and 7.5 %Ru‐36 %W x C/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts. |
doi_str_mv | 10.1002/cssc.202400540 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04728826v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04728826v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04728826v13</originalsourceid><addsrcrecordid>eNqVTbtOwzAUtRBIlMfKfFeGlpvUNWGswiMDQohWgi26OI7iyrEj263Ixg8g8Y18CSlU7EznofNg7CzBSYKYXsgQ5CTFlCPOOO6xUZIJPp4J_rL_x6fJITsKYYUo8EqIEfvIyb86-_X-uVh3nfNRVfC0HuSDBrI7_gw5RTJ9iAFq5yE2CpaebBhES1E7C66Goq-8e-tJquis-mkvSMqGvK5UAG2jgzvTS2eGyWvl9Wb4evS6Jd_DvNVWhRN2UJMJ6nSHx-z89maZF-OGTNn9RktHuizm9-XWQ36ZZlkqNsn0P9lvZKRj-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><source>Wiley Journals</source><creator>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</creator><creatorcontrib>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</creatorcontrib><description>Abstract Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %W x C/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W 2 C/AC and 7.5 %Ru‐36 %W x C/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202400540</identifier><language>eng</language><publisher>ChemPubSoc Europe/Wiley</publisher><subject>Chemical Sciences</subject><ispartof>ChemSusChem, 2024-05, Vol.17 (11)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4299-5937 ; 0000-0002-4299-5937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04728826$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulos, Joseph</creatorcontrib><creatorcontrib>Goc, Firat</creatorcontrib><creatorcontrib>Vandenbrouck, Tom</creatorcontrib><creatorcontrib>Perret, Noémie</creatorcontrib><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Royer, Sébastien</creatorcontrib><creatorcontrib>Rataboul, Franck</creatorcontrib><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><title>ChemSusChem</title><description>Abstract Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %W x C/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W 2 C/AC and 7.5 %Ru‐36 %W x C/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts.</description><subject>Chemical Sciences</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVTbtOwzAUtRBIlMfKfFeGlpvUNWGswiMDQohWgi26OI7iyrEj263Ixg8g8Y18CSlU7EznofNg7CzBSYKYXsgQ5CTFlCPOOO6xUZIJPp4J_rL_x6fJITsKYYUo8EqIEfvIyb86-_X-uVh3nfNRVfC0HuSDBrI7_gw5RTJ9iAFq5yE2CpaebBhES1E7C66Goq-8e-tJquis-mkvSMqGvK5UAG2jgzvTS2eGyWvl9Wb4evS6Jd_DvNVWhRN2UJMJ6nSHx-z89maZF-OGTNn9RktHuizm9-XWQ36ZZlkqNsn0P9lvZKRj-A</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Boulos, Joseph</creator><creator>Goc, Firat</creator><creator>Vandenbrouck, Tom</creator><creator>Perret, Noémie</creator><creator>Dhainaut, Jérémy</creator><creator>Royer, Sébastien</creator><creator>Rataboul, Franck</creator><general>ChemPubSoc Europe/Wiley</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid></search><sort><creationdate>20240503</creationdate><title>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</title><author>Boulos, Joseph ; Goc, Firat ; Vandenbrouck, Tom ; Perret, Noémie ; Dhainaut, Jérémy ; Royer, Sébastien ; Rataboul, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04728826v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulos, Joseph</creatorcontrib><creatorcontrib>Goc, Firat</creatorcontrib><creatorcontrib>Vandenbrouck, Tom</creatorcontrib><creatorcontrib>Perret, Noémie</creatorcontrib><creatorcontrib>Dhainaut, Jérémy</creatorcontrib><creatorcontrib>Royer, Sébastien</creatorcontrib><creatorcontrib>Rataboul, Franck</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulos, Joseph</au><au>Goc, Firat</au><au>Vandenbrouck, Tom</au><au>Perret, Noémie</au><au>Dhainaut, Jérémy</au><au>Royer, Sébastien</au><au>Rataboul, Franck</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines</atitle><jtitle>ChemSusChem</jtitle><date>2024-05-03</date><risdate>2024</risdate><volume>17</volume><issue>11</issue><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Abstract Nitrogen‐containing molecules are used for the synthesis of polymers, surfactants, agrochemicals, and dyes. In the context of green chemistry, it is important to form such compounds from bioresource. Short‐chain primary amines are of interest for the polymer industry, like 2‐aminopropanol, 1‐aminopropan‐2‐ol, and 1,2‐diaminopropane. These amines can be formed through the amination of oxygenated substrates, preferably in aqueous phase. This is possible with heterogeneous catalysts, however, effective systems that allow reactions under mild conditions are lacking. We report an efficient catalyst Ru−Ni/AC for the reductive amination of hydroxyacetone into 2‐aminopropanol. The catalyst has been reused during 3 cycles demonstrating a good stability. As a prospective study, extension to the reactivity of (poly)carbohydrates has been realized. Despite a lesser efficiency, 2‐aminopropanol (9 % yield of amines) has been formed from fructose, the first example from a carbohydrate. This was possible using a 7.5 %Ru‐36 %W x C/AC catalyst, composition allowing a one‐pot retro‐aldol cleavage into hydroxyacetone and reductive amination. The transformation of cellulose through sequential reactions with a combination of 30 %W 2 C/AC and 7.5 %Ru‐36 %W x C/AC system gave 2 % of 2‐aminopropanol, corresponding to the first example of the formation of this amine from cellulose with heterogeneous catalysts.</abstract><pub>ChemPubSoc Europe/Wiley</pub><doi>10.1002/cssc.202400540</doi><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid><orcidid>https://orcid.org/0000-0002-4299-5937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2024-05, Vol.17 (11) |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04728826v1 |
source | Wiley Journals |
subjects | Chemical Sciences |
title | Carbon‐Supported Ru‐Ni and Ru‐W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol‐Derived Primary Amines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%E2%80%90Supported%20Ru%E2%80%90Ni%20and%20Ru%E2%80%90W%20Catalysts%20for%20the%20Transformation%20of%20Hydroxyacetone%20and%20Saccharides%20into%20Glycol%E2%80%90Derived%20Primary%20Amines&rft.jtitle=ChemSusChem&rft.au=Boulos,%20Joseph&rft.date=2024-05-03&rft.volume=17&rft.issue=11&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202400540&rft_dat=%3Chal%3Eoai_HAL_hal_04728826v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |