Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics
In musical acoustics, the production of sound is usually described by the nonlinear interaction of the musician with a resonator (the instrument). For example a string (resonator) can be bowed or hit by a piano hammer (nonlinear interactions). The aim of this paper is to provide a stable (passive-gu...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2025-02, Vol.113 (4), p.3249-3275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3275 |
---|---|
container_issue | 4 |
container_start_page | 3249 |
container_title | Nonlinear dynamics |
container_volume | 113 |
creator | Falaize, Antoine Roze, David |
description | In musical acoustics, the production of sound is usually described by the nonlinear interaction of the musician with a resonator (the instrument). For example a string (resonator) can be bowed or hit by a piano hammer (nonlinear interactions). The aim of this paper is to provide a stable (passive-guaranteed) simulation of such interaction systems. Our approach consists in first defining a generic passive-guaranteed structure for the interaction (finite dimensional) and for the resonator (infinite dimensional) and second constructing a generic procedure for the discretization of the resonator. This is achieved in the Port-Hamiltonian systems framework that decomposes a physical model into a network of energy-storing components, dissipative components and inputs-outputs, thus guaranteeing the passivity of the proposed models. Finally, a well established structure preserving time discretization method is used to provide numerical models which prove to fulfill a discrete power balance, hence the numerical stability. This generic procedure is applied to the sound synthesis of a bowed string and of a string hit by a piano hammer. |
doi_str_mv | 10.1007/s11071-024-10438-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04727388v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147269441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-d43d05d6b4988d8c870e6190b5e8411037c84972e7ff978c609666df52b2e1443</originalsourceid><addsrcrecordid>eNo9kcFuGyEURVGVSnXc_kBXSF11QfsY8ADLKGqSSpa6aaXsEIY3CdGYmQLjqv2R_G6wXWWFuPdw9R6XkI8cvnAA9bVwDooz6CTjIIVm5g1Z8Y0SrOvN_QVZgWkWGLh_Ry5LeQIA0YFekedbTJijp7MrJR6QPSwuu1QRA01TGmNCl2lsQna-xinR_RRwpC4FWmpefF0ysjljwXyI6YGW2dXoRhpi8Rlr_OdOr-Y8eQyNpX9ifaRunsfoT1Zp6XS_lHZtsX5aSo2-vCdvBzcW_PD_XJNfN99-Xt-x7Y_b79dXW-a5gcqCFAE2od9Jo3XQXivAvjm7DWrZ_kQor6VRHaphMEr7Hkzf92HYdLsOuZRiTT6fcx_daOcc9y7_tZOL9u5qa48aSNUpofWBN_bTmW3L_F6wVPs0LTm18azgDeuNlEeqO1M-T6VkHF5jOdhjWfZclm1l2VNZ1ogXAfyLAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147269441</pqid></control><display><type>article</type><title>Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Falaize, Antoine ; Roze, David</creator><creatorcontrib>Falaize, Antoine ; Roze, David</creatorcontrib><description>In musical acoustics, the production of sound is usually described by the nonlinear interaction of the musician with a resonator (the instrument). For example a string (resonator) can be bowed or hit by a piano hammer (nonlinear interactions). The aim of this paper is to provide a stable (passive-guaranteed) simulation of such interaction systems. Our approach consists in first defining a generic passive-guaranteed structure for the interaction (finite dimensional) and for the resonator (infinite dimensional) and second constructing a generic procedure for the discretization of the resonator. This is achieved in the Port-Hamiltonian systems framework that decomposes a physical model into a network of energy-storing components, dissipative components and inputs-outputs, thus guaranteeing the passivity of the proposed models. Finally, a well established structure preserving time discretization method is used to provide numerical models which prove to fulfill a discrete power balance, hence the numerical stability. This generic procedure is applied to the sound synthesis of a bowed string and of a string hit by a piano hammer.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10438-9</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Acoustics ; Bowing ; Discretization ; Hamiltonian functions ; Hammers ; Interaction models ; Mechanics ; Numerical models ; Numerical stability ; Physics ; Pianos ; Resonators ; Solid mechanics ; Strings ; Vibrations</subject><ispartof>Nonlinear dynamics, 2025-02, Vol.113 (4), p.3249-3275</ispartof><rights>Copyright Springer Nature B.V. Feb 2025</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-d43d05d6b4988d8c870e6190b5e8411037c84972e7ff978c609666df52b2e1443</cites><orcidid>0000-0002-4121-5871 ; 0000-0002-9018-184X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04727388$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Falaize, Antoine</creatorcontrib><creatorcontrib>Roze, David</creatorcontrib><title>Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics</title><title>Nonlinear dynamics</title><description>In musical acoustics, the production of sound is usually described by the nonlinear interaction of the musician with a resonator (the instrument). For example a string (resonator) can be bowed or hit by a piano hammer (nonlinear interactions). The aim of this paper is to provide a stable (passive-guaranteed) simulation of such interaction systems. Our approach consists in first defining a generic passive-guaranteed structure for the interaction (finite dimensional) and for the resonator (infinite dimensional) and second constructing a generic procedure for the discretization of the resonator. This is achieved in the Port-Hamiltonian systems framework that decomposes a physical model into a network of energy-storing components, dissipative components and inputs-outputs, thus guaranteeing the passivity of the proposed models. Finally, a well established structure preserving time discretization method is used to provide numerical models which prove to fulfill a discrete power balance, hence the numerical stability. This generic procedure is applied to the sound synthesis of a bowed string and of a string hit by a piano hammer.</description><subject>Acoustics</subject><subject>Bowing</subject><subject>Discretization</subject><subject>Hamiltonian functions</subject><subject>Hammers</subject><subject>Interaction models</subject><subject>Mechanics</subject><subject>Numerical models</subject><subject>Numerical stability</subject><subject>Physics</subject><subject>Pianos</subject><subject>Resonators</subject><subject>Solid mechanics</subject><subject>Strings</subject><subject>Vibrations</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kcFuGyEURVGVSnXc_kBXSF11QfsY8ADLKGqSSpa6aaXsEIY3CdGYmQLjqv2R_G6wXWWFuPdw9R6XkI8cvnAA9bVwDooz6CTjIIVm5g1Z8Y0SrOvN_QVZgWkWGLh_Ry5LeQIA0YFekedbTJijp7MrJR6QPSwuu1QRA01TGmNCl2lsQna-xinR_RRwpC4FWmpefF0ysjljwXyI6YGW2dXoRhpi8Rlr_OdOr-Y8eQyNpX9ifaRunsfoT1Zp6XS_lHZtsX5aSo2-vCdvBzcW_PD_XJNfN99-Xt-x7Y_b79dXW-a5gcqCFAE2od9Jo3XQXivAvjm7DWrZ_kQor6VRHaphMEr7Hkzf92HYdLsOuZRiTT6fcx_daOcc9y7_tZOL9u5qa48aSNUpofWBN_bTmW3L_F6wVPs0LTm18azgDeuNlEeqO1M-T6VkHF5jOdhjWfZclm1l2VNZ1ogXAfyLAQ</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Falaize, Antoine</creator><creator>Roze, David</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4121-5871</orcidid><orcidid>https://orcid.org/0000-0002-9018-184X</orcidid></search><sort><creationdate>202502</creationdate><title>Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics</title><author>Falaize, Antoine ; Roze, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-d43d05d6b4988d8c870e6190b5e8411037c84972e7ff978c609666df52b2e1443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acoustics</topic><topic>Bowing</topic><topic>Discretization</topic><topic>Hamiltonian functions</topic><topic>Hammers</topic><topic>Interaction models</topic><topic>Mechanics</topic><topic>Numerical models</topic><topic>Numerical stability</topic><topic>Physics</topic><topic>Pianos</topic><topic>Resonators</topic><topic>Solid mechanics</topic><topic>Strings</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falaize, Antoine</creatorcontrib><creatorcontrib>Roze, David</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falaize, Antoine</au><au>Roze, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics</atitle><jtitle>Nonlinear dynamics</jtitle><date>2025-02</date><risdate>2025</risdate><volume>113</volume><issue>4</issue><spage>3249</spage><epage>3275</epage><pages>3249-3275</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In musical acoustics, the production of sound is usually described by the nonlinear interaction of the musician with a resonator (the instrument). For example a string (resonator) can be bowed or hit by a piano hammer (nonlinear interactions). The aim of this paper is to provide a stable (passive-guaranteed) simulation of such interaction systems. Our approach consists in first defining a generic passive-guaranteed structure for the interaction (finite dimensional) and for the resonator (infinite dimensional) and second constructing a generic procedure for the discretization of the resonator. This is achieved in the Port-Hamiltonian systems framework that decomposes a physical model into a network of energy-storing components, dissipative components and inputs-outputs, thus guaranteeing the passivity of the proposed models. Finally, a well established structure preserving time discretization method is used to provide numerical models which prove to fulfill a discrete power balance, hence the numerical stability. This generic procedure is applied to the sound synthesis of a bowed string and of a string hit by a piano hammer.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-024-10438-9</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-4121-5871</orcidid><orcidid>https://orcid.org/0000-0002-9018-184X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2025-02, Vol.113 (4), p.3249-3275 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04727388v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustics Bowing Discretization Hamiltonian functions Hammers Interaction models Mechanics Numerical models Numerical stability Physics Pianos Resonators Solid mechanics Strings Vibrations |
title | Generic passive-guaranteed nonlinear interaction model and structure-preserving spatial discretization procedure with applications in musical acoustics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20passive-guaranteed%20nonlinear%20interaction%20model%20and%20structure-preserving%20spatial%20discretization%20procedure%20with%20applications%20in%20musical%20acoustics&rft.jtitle=Nonlinear%20dynamics&rft.au=Falaize,%20Antoine&rft.date=2025-02&rft.volume=113&rft.issue=4&rft.spage=3249&rft.epage=3275&rft.pages=3249-3275&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10438-9&rft_dat=%3Cproquest_hal_p%3E3147269441%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147269441&rft_id=info:pmid/&rfr_iscdi=true |