LMI‐based neural observer for state and nonlinear function estimation

This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-07, Vol.34 (10), p.6964-6984
Hauptverfasser: Jeon, Woongsun, Chakrabarty, Ankush, Zemouche, Ali, Rajamani, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6984
container_issue 10
container_start_page 6964
container_title International journal of robust and nonlinear control
container_volume 34
creator Jeon, Woongsun
Chakrabarty, Ankush
Zemouche, Ali
Rajamani, Rajesh
description This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.
doi_str_mv 10.1002/rnc.7327
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04724827v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063194397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhYMoWKvgIwTc6CJ1_pKZWZaibSEqiK6HSXKDKXGmziSV7nwEn9EncWLEnat7uOfj3MuJonOMZhghcu1MOeOU8INogpGUCSZUHg6ayURIQo-jE-83CAWPsEm0zO_WXx-fhfZQxQZ6p9vYFh7cDlxcWxf7TncQaxNca9rGgA773pRdY00Mvmte9SBPo6Natx7Ofuc0er69eVqskvxhuV7M86QkQvCkroUASlPAVVppKOoUg9aMZoBIyRDLWCZEmtY1qaCQiFEuIBVccswZKlJKp9HVmPuiW7V14brbK6sbtZrnatghxgkThO9wYC9GduvsWx9-VRvbOxPeUxRlFEtGJQ_U5UiVznrvoP6LxUgNlapQqRoqDWgyou9NC_t_OfV4v_jhvwHfFHbF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063194397</pqid></control><display><type>article</type><title>LMI‐based neural observer for state and nonlinear function estimation</title><source>Wiley Online Library All Journals</source><creator>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</creator><creatorcontrib>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</creatorcontrib><description>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7327</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Automatic ; Engineering Sciences ; function approximation ; Hybrid systems ; learning for control ; Linear functions ; linear matrix inequalities ; Neural networks ; nonlinear systems ; observers ; Parameter estimation ; State estimation ; State observers ; System identification</subject><ispartof>International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6964-6984</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</cites><orcidid>0000-0001-9637-854X ; 0000-0001-9931-7419 ; 0000-0003-1668-8893 ; 0000-0002-5804-2225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7327$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7327$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04724827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Woongsun</creatorcontrib><creatorcontrib>Chakrabarty, Ankush</creatorcontrib><creatorcontrib>Zemouche, Ali</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><title>LMI‐based neural observer for state and nonlinear function estimation</title><title>International journal of robust and nonlinear control</title><description>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><subject>function approximation</subject><subject>Hybrid systems</subject><subject>learning for control</subject><subject>Linear functions</subject><subject>linear matrix inequalities</subject><subject>Neural networks</subject><subject>nonlinear systems</subject><subject>observers</subject><subject>Parameter estimation</subject><subject>State estimation</subject><subject>State observers</subject><subject>System identification</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhYMoWKvgIwTc6CJ1_pKZWZaibSEqiK6HSXKDKXGmziSV7nwEn9EncWLEnat7uOfj3MuJonOMZhghcu1MOeOU8INogpGUCSZUHg6ayURIQo-jE-83CAWPsEm0zO_WXx-fhfZQxQZ6p9vYFh7cDlxcWxf7TncQaxNca9rGgA773pRdY00Mvmte9SBPo6Natx7Ofuc0er69eVqskvxhuV7M86QkQvCkroUASlPAVVppKOoUg9aMZoBIyRDLWCZEmtY1qaCQiFEuIBVccswZKlJKp9HVmPuiW7V14brbK6sbtZrnatghxgkThO9wYC9GduvsWx9-VRvbOxPeUxRlFEtGJQ_U5UiVznrvoP6LxUgNlapQqRoqDWgyou9NC_t_OfV4v_jhvwHfFHbF</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Jeon, Woongsun</creator><creator>Chakrabarty, Ankush</creator><creator>Zemouche, Ali</creator><creator>Rajamani, Rajesh</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9637-854X</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><orcidid>https://orcid.org/0000-0003-1668-8893</orcidid><orcidid>https://orcid.org/0000-0002-5804-2225</orcidid></search><sort><creationdate>20240710</creationdate><title>LMI‐based neural observer for state and nonlinear function estimation</title><author>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><topic>function approximation</topic><topic>Hybrid systems</topic><topic>learning for control</topic><topic>Linear functions</topic><topic>linear matrix inequalities</topic><topic>Neural networks</topic><topic>nonlinear systems</topic><topic>observers</topic><topic>Parameter estimation</topic><topic>State estimation</topic><topic>State observers</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Woongsun</creatorcontrib><creatorcontrib>Chakrabarty, Ankush</creatorcontrib><creatorcontrib>Zemouche, Ali</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Woongsun</au><au>Chakrabarty, Ankush</au><au>Zemouche, Ali</au><au>Rajamani, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI‐based neural observer for state and nonlinear function estimation</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-07-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><spage>6964</spage><epage>6984</epage><pages>6964-6984</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rnc.7327</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9637-854X</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><orcidid>https://orcid.org/0000-0003-1668-8893</orcidid><orcidid>https://orcid.org/0000-0002-5804-2225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6964-6984
issn 1049-8923
1099-1239
language eng
recordid cdi_hal_primary_oai_HAL_hal_04724827v1
source Wiley Online Library All Journals
subjects Automatic
Engineering Sciences
function approximation
Hybrid systems
learning for control
Linear functions
linear matrix inequalities
Neural networks
nonlinear systems
observers
Parameter estimation
State estimation
State observers
System identification
title LMI‐based neural observer for state and nonlinear function estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI%E2%80%90based%20neural%20observer%20for%20state%20and%20nonlinear%20function%20estimation&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Jeon,%20Woongsun&rft.date=2024-07-10&rft.volume=34&rft.issue=10&rft.spage=6964&rft.epage=6984&rft.pages=6964-6984&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7327&rft_dat=%3Cproquest_hal_p%3E3063194397%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063194397&rft_id=info:pmid/&rfr_iscdi=true