LMI‐based neural observer for state and nonlinear function estimation
This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their tr...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-07, Vol.34 (10), p.6964-6984 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6984 |
---|---|
container_issue | 10 |
container_start_page | 6964 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Jeon, Woongsun Chakrabarty, Ankush Zemouche, Ali Rajamani, Rajesh |
description | This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully. |
doi_str_mv | 10.1002/rnc.7327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04724827v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063194397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhYMoWKvgIwTc6CJ1_pKZWZaibSEqiK6HSXKDKXGmziSV7nwEn9EncWLEnat7uOfj3MuJonOMZhghcu1MOeOU8INogpGUCSZUHg6ayURIQo-jE-83CAWPsEm0zO_WXx-fhfZQxQZ6p9vYFh7cDlxcWxf7TncQaxNca9rGgA773pRdY00Mvmte9SBPo6Natx7Ofuc0er69eVqskvxhuV7M86QkQvCkroUASlPAVVppKOoUg9aMZoBIyRDLWCZEmtY1qaCQiFEuIBVccswZKlJKp9HVmPuiW7V14brbK6sbtZrnatghxgkThO9wYC9GduvsWx9-VRvbOxPeUxRlFEtGJQ_U5UiVznrvoP6LxUgNlapQqRoqDWgyou9NC_t_OfV4v_jhvwHfFHbF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063194397</pqid></control><display><type>article</type><title>LMI‐based neural observer for state and nonlinear function estimation</title><source>Wiley Online Library All Journals</source><creator>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</creator><creatorcontrib>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</creatorcontrib><description>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7327</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Automatic ; Engineering Sciences ; function approximation ; Hybrid systems ; learning for control ; Linear functions ; linear matrix inequalities ; Neural networks ; nonlinear systems ; observers ; Parameter estimation ; State estimation ; State observers ; System identification</subject><ispartof>International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6964-6984</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</cites><orcidid>0000-0001-9637-854X ; 0000-0001-9931-7419 ; 0000-0003-1668-8893 ; 0000-0002-5804-2225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7327$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7327$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04724827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Woongsun</creatorcontrib><creatorcontrib>Chakrabarty, Ankush</creatorcontrib><creatorcontrib>Zemouche, Ali</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><title>LMI‐based neural observer for state and nonlinear function estimation</title><title>International journal of robust and nonlinear control</title><description>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</description><subject>Automatic</subject><subject>Engineering Sciences</subject><subject>function approximation</subject><subject>Hybrid systems</subject><subject>learning for control</subject><subject>Linear functions</subject><subject>linear matrix inequalities</subject><subject>Neural networks</subject><subject>nonlinear systems</subject><subject>observers</subject><subject>Parameter estimation</subject><subject>State estimation</subject><subject>State observers</subject><subject>System identification</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhYMoWKvgIwTc6CJ1_pKZWZaibSEqiK6HSXKDKXGmziSV7nwEn9EncWLEnat7uOfj3MuJonOMZhghcu1MOeOU8INogpGUCSZUHg6ayURIQo-jE-83CAWPsEm0zO_WXx-fhfZQxQZ6p9vYFh7cDlxcWxf7TncQaxNca9rGgA773pRdY00Mvmte9SBPo6Natx7Ofuc0er69eVqskvxhuV7M86QkQvCkroUASlPAVVppKOoUg9aMZoBIyRDLWCZEmtY1qaCQiFEuIBVccswZKlJKp9HVmPuiW7V14brbK6sbtZrnatghxgkThO9wYC9GduvsWx9-VRvbOxPeUxRlFEtGJQ_U5UiVznrvoP6LxUgNlapQqRoqDWgyou9NC_t_OfV4v_jhvwHfFHbF</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Jeon, Woongsun</creator><creator>Chakrabarty, Ankush</creator><creator>Zemouche, Ali</creator><creator>Rajamani, Rajesh</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9637-854X</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><orcidid>https://orcid.org/0000-0003-1668-8893</orcidid><orcidid>https://orcid.org/0000-0002-5804-2225</orcidid></search><sort><creationdate>20240710</creationdate><title>LMI‐based neural observer for state and nonlinear function estimation</title><author>Jeon, Woongsun ; Chakrabarty, Ankush ; Zemouche, Ali ; Rajamani, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2887-ff88e335e1d5daebf51eaa436e02c4046468855ff2deb904378e587971740b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic</topic><topic>Engineering Sciences</topic><topic>function approximation</topic><topic>Hybrid systems</topic><topic>learning for control</topic><topic>Linear functions</topic><topic>linear matrix inequalities</topic><topic>Neural networks</topic><topic>nonlinear systems</topic><topic>observers</topic><topic>Parameter estimation</topic><topic>State estimation</topic><topic>State observers</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Woongsun</creatorcontrib><creatorcontrib>Chakrabarty, Ankush</creatorcontrib><creatorcontrib>Zemouche, Ali</creatorcontrib><creatorcontrib>Rajamani, Rajesh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Woongsun</au><au>Chakrabarty, Ankush</au><au>Zemouche, Ali</au><au>Rajamani, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI‐based neural observer for state and nonlinear function estimation</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-07-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><spage>6964</spage><epage>6984</epage><pages>6964-6984</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an H∞$$ {H}_{\infty } $$ bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rnc.7327</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9637-854X</orcidid><orcidid>https://orcid.org/0000-0001-9931-7419</orcidid><orcidid>https://orcid.org/0000-0003-1668-8893</orcidid><orcidid>https://orcid.org/0000-0002-5804-2225</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-07, Vol.34 (10), p.6964-6984 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04724827v1 |
source | Wiley Online Library All Journals |
subjects | Automatic Engineering Sciences function approximation Hybrid systems learning for control Linear functions linear matrix inequalities Neural networks nonlinear systems observers Parameter estimation State estimation State observers System identification |
title | LMI‐based neural observer for state and nonlinear function estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI%E2%80%90based%20neural%20observer%20for%20state%20and%20nonlinear%20function%20estimation&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Jeon,%20Woongsun&rft.date=2024-07-10&rft.volume=34&rft.issue=10&rft.spage=6964&rft.epage=6984&rft.pages=6964-6984&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7327&rft_dat=%3Cproquest_hal_p%3E3063194397%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063194397&rft_id=info:pmid/&rfr_iscdi=true |