Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells
In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitr...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2003-03, Vol.192 (11), p.1323-1335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 |
---|---|
container_issue | 11 |
container_start_page | 1323 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 192 |
creator | Duigou, Laëtitia Mostafa Daya, El Potier-Ferry, Michel |
description | In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus. |
doi_str_mv | 10.1016/S0045-7825(02)00641-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04724472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782502006412</els_id><sourcerecordid>28039359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</originalsourceid><addsrcrecordid>eNqFkctqGzEUhkVpoW7aRyhok9AsJpU0I1laFRNyA0MWTdbiWHMUK8gjRxoP9O0r2yFZRiDEEd9_bj8hPzm74Iyr338Z62Qz10L-YuKcMdXxRnwiM67nphG81Z_J7A35Sr6V8szq0VzMSLgbMcMYJqQQn1IO43pTqE-ZDmloYhgQMsXwhMMEcYd0m9Mq4qZc0MV2G4Or0jTQMdEprPIhKDT5GhWXMEIZg6NljTGW7-SLh1jwx-t7Qh6vrx4ub5vl_c3d5WLZuE7pseHMC4YrA6pvPTfGux6wB6Z9qxC80ijnrAXDPSCX2rUGO22U9NqBcBLbE3J-zLuGaLc5bCD_swmCvV0s7f6PdXPR1Tvxyp4d2TrWyw7LaDe18dotDJh2xQrNWtNKU0F5BF1OpWT0b5k5s3sT7MEEu9-wZcIeTLCi6k5fC0BxEH2GwYXyLu6UYqaTlftz5LBuZgqYbXEBB4d9yOhG26fwQaX_eVOdbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28039359</pqid></control><display><type>article</type><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</creator><creatorcontrib>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</creatorcontrib><description>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(02)00641-2</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Engineering Sciences ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mechanics ; Non-linear eigenvalues ; Perturbation techniques ; Physics ; Sandwich shells ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computer methods in applied mechanics and engineering, 2003-03, Vol.192 (11), p.1323-1335</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</citedby><cites>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</cites><orcidid>0009-0008-8125-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7825(02)00641-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14660945$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04724472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Mostafa Daya, El</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</description><subject>Computational techniques</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mechanics</subject><subject>Non-linear eigenvalues</subject><subject>Perturbation techniques</subject><subject>Physics</subject><subject>Sandwich shells</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkctqGzEUhkVpoW7aRyhok9AsJpU0I1laFRNyA0MWTdbiWHMUK8gjRxoP9O0r2yFZRiDEEd9_bj8hPzm74Iyr338Z62Qz10L-YuKcMdXxRnwiM67nphG81Z_J7A35Sr6V8szq0VzMSLgbMcMYJqQQn1IO43pTqE-ZDmloYhgQMsXwhMMEcYd0m9Mq4qZc0MV2G4Or0jTQMdEprPIhKDT5GhWXMEIZg6NljTGW7-SLh1jwx-t7Qh6vrx4ub5vl_c3d5WLZuE7pseHMC4YrA6pvPTfGux6wB6Z9qxC80ijnrAXDPSCX2rUGO22U9NqBcBLbE3J-zLuGaLc5bCD_swmCvV0s7f6PdXPR1Tvxyp4d2TrWyw7LaDe18dotDJh2xQrNWtNKU0F5BF1OpWT0b5k5s3sT7MEEu9-wZcIeTLCi6k5fC0BxEH2GwYXyLu6UYqaTlftz5LBuZgqYbXEBB4d9yOhG26fwQaX_eVOdbg</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Duigou, Laëtitia</creator><creator>Mostafa Daya, El</creator><creator>Potier-Ferry, Michel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></search><sort><creationdate>200303</creationdate><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><author>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational techniques</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mechanics</topic><topic>Non-linear eigenvalues</topic><topic>Perturbation techniques</topic><topic>Physics</topic><topic>Sandwich shells</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Mostafa Daya, El</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duigou, Laëtitia</au><au>Mostafa Daya, El</au><au>Potier-Ferry, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2003-03</date><risdate>2003</risdate><volume>192</volume><issue>11</issue><spage>1323</spage><epage>1335</epage><pages>1323-1335</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(02)00641-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2003-03, Vol.192 (11), p.1323-1335 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04724472v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational techniques Engineering Sciences Exact sciences and technology Finite element method Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Mathematical methods in physics Mechanics Non-linear eigenvalues Perturbation techniques Physics Sandwich shells Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20algorithms%20for%20non-linear%20eigenvalue%20problems.%20Application%20to%20vibrations%20of%20viscoelastic%20shells&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Duigou,%20La%C3%ABtitia&rft.date=2003-03&rft.volume=192&rft.issue=11&rft.spage=1323&rft.epage=1335&rft.pages=1323-1335&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(02)00641-2&rft_dat=%3Cproquest_hal_p%3E28039359%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28039359&rft_id=info:pmid/&rft_els_id=S0045782502006412&rfr_iscdi=true |