Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells

In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2003-03, Vol.192 (11), p.1323-1335
Hauptverfasser: Duigou, Laëtitia, Mostafa Daya, El, Potier-Ferry, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1335
container_issue 11
container_start_page 1323
container_title Computer methods in applied mechanics and engineering
container_volume 192
creator Duigou, Laëtitia
Mostafa Daya, El
Potier-Ferry, Michel
description In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.
doi_str_mv 10.1016/S0045-7825(02)00641-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04724472v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782502006412</els_id><sourcerecordid>28039359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</originalsourceid><addsrcrecordid>eNqFkctqGzEUhkVpoW7aRyhok9AsJpU0I1laFRNyA0MWTdbiWHMUK8gjRxoP9O0r2yFZRiDEEd9_bj8hPzm74Iyr338Z62Qz10L-YuKcMdXxRnwiM67nphG81Z_J7A35Sr6V8szq0VzMSLgbMcMYJqQQn1IO43pTqE-ZDmloYhgQMsXwhMMEcYd0m9Mq4qZc0MV2G4Or0jTQMdEprPIhKDT5GhWXMEIZg6NljTGW7-SLh1jwx-t7Qh6vrx4ub5vl_c3d5WLZuE7pseHMC4YrA6pvPTfGux6wB6Z9qxC80ijnrAXDPSCX2rUGO22U9NqBcBLbE3J-zLuGaLc5bCD_swmCvV0s7f6PdXPR1Tvxyp4d2TrWyw7LaDe18dotDJh2xQrNWtNKU0F5BF1OpWT0b5k5s3sT7MEEu9-wZcIeTLCi6k5fC0BxEH2GwYXyLu6UYqaTlftz5LBuZgqYbXEBB4d9yOhG26fwQaX_eVOdbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28039359</pqid></control><display><type>article</type><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</creator><creatorcontrib>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</creatorcontrib><description>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(02)00641-2</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Engineering Sciences ; Exact sciences and technology ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Mechanics ; Non-linear eigenvalues ; Perturbation techniques ; Physics ; Sandwich shells ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computer methods in applied mechanics and engineering, 2003-03, Vol.192 (11), p.1323-1335</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</citedby><cites>FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</cites><orcidid>0009-0008-8125-5027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7825(02)00641-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14660945$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04724472$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Mostafa Daya, El</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</description><subject>Computational techniques</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Mechanics</subject><subject>Non-linear eigenvalues</subject><subject>Perturbation techniques</subject><subject>Physics</subject><subject>Sandwich shells</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkctqGzEUhkVpoW7aRyhok9AsJpU0I1laFRNyA0MWTdbiWHMUK8gjRxoP9O0r2yFZRiDEEd9_bj8hPzm74Iyr338Z62Qz10L-YuKcMdXxRnwiM67nphG81Z_J7A35Sr6V8szq0VzMSLgbMcMYJqQQn1IO43pTqE-ZDmloYhgQMsXwhMMEcYd0m9Mq4qZc0MV2G4Or0jTQMdEprPIhKDT5GhWXMEIZg6NljTGW7-SLh1jwx-t7Qh6vrx4ub5vl_c3d5WLZuE7pseHMC4YrA6pvPTfGux6wB6Z9qxC80ijnrAXDPSCX2rUGO22U9NqBcBLbE3J-zLuGaLc5bCD_swmCvV0s7f6PdXPR1Tvxyp4d2TrWyw7LaDe18dotDJh2xQrNWtNKU0F5BF1OpWT0b5k5s3sT7MEEu9-wZcIeTLCi6k5fC0BxEH2GwYXyLu6UYqaTlftz5LBuZgqYbXEBB4d9yOhG26fwQaX_eVOdbg</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Duigou, Laëtitia</creator><creator>Mostafa Daya, El</creator><creator>Potier-Ferry, Michel</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></search><sort><creationdate>200303</creationdate><title>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</title><author>Duigou, Laëtitia ; Mostafa Daya, El ; Potier-Ferry, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-10f20eb9a6d3f199fcdaeda08f36eaf68e5703a91fae158c39e48965f8ca2c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Computational techniques</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Mechanics</topic><topic>Non-linear eigenvalues</topic><topic>Perturbation techniques</topic><topic>Physics</topic><topic>Sandwich shells</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duigou, Laëtitia</creatorcontrib><creatorcontrib>Mostafa Daya, El</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duigou, Laëtitia</au><au>Mostafa Daya, El</au><au>Potier-Ferry, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2003-03</date><risdate>2003</risdate><volume>192</volume><issue>11</issue><spage>1323</spage><epage>1335</epage><pages>1323-1335</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper, two numerical iterative algorithms are developed for the vibrations of damped sandwich structures. These methods associate homotopy, asymptotic numerical techniques and Padé approximants. The first one is a sort of high order Newton method and the second one uses a more or less arbitrary matrix. So one can determine the natural frequencies and the loss factors of viscoelastically damped sandwich structures. To assess their efficiency, a few sandwich beams and plates have been considered. The techniques can be applied to large scale structures, to large damping and to strongly non-linear viscoelastic modulus.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(02)00641-2</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0008-8125-5027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2003-03, Vol.192 (11), p.1323-1335
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_04724472v1
source Access via ScienceDirect (Elsevier)
subjects Computational techniques
Engineering Sciences
Exact sciences and technology
Finite element method
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Mechanics
Non-linear eigenvalues
Perturbation techniques
Physics
Sandwich shells
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20algorithms%20for%20non-linear%20eigenvalue%20problems.%20Application%20to%20vibrations%20of%20viscoelastic%20shells&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Duigou,%20La%C3%ABtitia&rft.date=2003-03&rft.volume=192&rft.issue=11&rft.spage=1323&rft.epage=1335&rft.pages=1323-1335&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(02)00641-2&rft_dat=%3Cproquest_hal_p%3E28039359%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28039359&rft_id=info:pmid/&rft_els_id=S0045782502006412&rfr_iscdi=true